Computation of the Yoneda algebras for algebras of dihedral type
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 101-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We continue a series of papers in which the Yoneda algebra is computed for algebras of dihedral and semidihedral types. In this paper, the Yoneda algebra is computed for one more family of algebras, namely, for the family $D(3\mathcal L)$ (in the classification of K. Erdmann). In order to find the minimal resolutions of simple modules, we used for the first time a $C^{++}$ program implemented by the second author.
			
            
            
            
          
        
      @article{ZNSL_2003_305_a5,
     author = {A. I. Generalov and N. V. Kosmatov},
     title = {Computation of the {Yoneda} algebras for algebras of dihedral type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {305},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a5/}
}
                      
                      
                    A. I. Generalov; N. V. Kosmatov. Computation of the Yoneda algebras for algebras of dihedral type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 101-120. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a5/