H. Weyl asymptotics and Rankin convolutions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 44-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Well-known H. Weyl asymptotics for eigenvalues is obtained by the arithmetic method. For congruence groups, the remainder in this asymptotics is a square root of the principal term.
@article{ZNSL_2003_305_a2,
     author = {A. I. Vinogradov},
     title = {H.~Weyl asymptotics and {Rankin} convolutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--59},
     year = {2003},
     volume = {305},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a2/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - H. Weyl asymptotics and Rankin convolutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 44
EP  - 59
VL  - 305
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a2/
LA  - ru
ID  - ZNSL_2003_305_a2
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T H. Weyl asymptotics and Rankin convolutions
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 44-59
%V 305
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a2/
%G ru
%F ZNSL_2003_305_a2
A. I. Vinogradov. H. Weyl asymptotics and Rankin convolutions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 44-59. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a2/

[1] A. Selberg, “Discontinuous groups and harmonic analysis”, Proc. Intern. Congress Math., Stockholm, 1962, 177–189 | MR

[2] W. Roeleke, “Das Eigenwertproblem automorphen Formen in der hyperbolischen Ebene, I, II”, Math. Ann., 167 (1986), 292–337 ; 168 (1987), 261–324 | DOI | DOI

[3] J. Elstrodt, “Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, II, III”, Math. Z, 132 (1973), 99–134 ; Math. Ann., 208 (1974), 99–132 | DOI | MR | Zbl | DOI | MR | Zbl

[4] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1951 | MR

[5] H. Bateman, A. Erde'lyi, Higher Transcendental Functions, Vol. 2, 1953

[6] J.-M. Deshouillers, H. Jwaniec, “Kloosterman sums and Fourier coefficients of cusp forms”, Invent. Math., 70:2 (1982), 219–288 | DOI | MR | Zbl

[7] T. Kubota, Elementary Theory of Eisenstein series, Kodansha, Tokio, 1973 | MR

[8] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl

[9] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv AN SSSR, Ser. mat., 32:1 (1968), 134–185 | MR | Zbl

[10] L. A. Takhtajan, A. I. Vinogradov, “The Gauss–Hasse hypothesis on real quadratic fields with class number one”, J. Reine Angew. Mathematik, 335 (1982), 40–86 | DOI | MR

[11] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika”, Mat. sb., 111(153):3 (1980), 334–383 | MR | Zbl

[12] A. B. Venkov, Spektralnaya teoriya avtomorfnykh funktsii, Trudy MIAN SSSR, 153, 1981 | MR | Zbl

[13] A. I. Vinogradov, preprint No 18

[14] A. I. Vinogradov, “Operator otrazheniya i kanonicheskii bazis”, Zap. nauchn. semin. POMI, 291, 2002, 109–130 | MR | Zbl