@article{ZNSL_2003_305_a13,
author = {V. A. Petrov},
title = {Odd unitary groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--225},
year = {2003},
volume = {305},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/}
}
V. A. Petrov. Odd unitary groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 195-225. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/
[1] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. Analiz i ego prilozheniya, 5 (1971), 102–110 | Zbl
[2] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21 (1969), 474–494 | DOI | MR | Zbl
[3] E. Abe, “Coverings of twisted Chevalley groups over commutative rings”, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13:371 (1977), 194–218 | MR | Zbl
[4] A. Bak, The stable structure of quadratic modules, Thesis, Columbia University, 1969
[5] A. Bak, $K$-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, 1981 | MR | Zbl
[6] A. Bak, “Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[7] A. Bak, V. Petrov, G. Tang, “Stability for quadratic $K_1$” (to appear) | MR
[8] A. Bak, G. Tang, “Stability for Hermitian $K_1$”, J. Pure Appl. Algebra, 150 (2000), 107–121 | DOI | MR | Zbl
[9] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[10] A. J. Hahn, O. T. O'Meara, The Classical Groups and $K$-Theory, Springer-Verlag, Berlin, 1989 | MR
[11] R. Hazrat, “Dimension theory and non-stable $K_1$ of quadratic modules”, $K$-Theory, 27 (2002), 293–327 | DOI | MR
[12] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[13] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Springer-Verlag, Berlin, 1991 | MR
[14] V. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29:3 (2003) (to appear) | DOI | MR
[15] J. T. Stafford, “Absolute stable rank and quadratic forms over noncommutative rings”, $K$-Theory, 4 (1990), 121–130 | DOI | MR | Zbl
[16] M. R. Stein, “Relativizing functors on rings and algebraic $K$-theory”, J. Algebra, 19:1 (1971), 140–152 | DOI | MR | Zbl
[17] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175 (1995), 526–536 | DOI | MR | Zbl
[18] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | MR | Zbl
[19] G. Tang, “Hermitian groups and K-theory”, $K$-Theory, 13 (1998), 209–267 | DOI | MR | Zbl
[20] W. van der Kallen, B. Magurn, L. N. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl
[21] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl
[22] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl
[23] L. N. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR