Odd unitary groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 195-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we introduce a new type of classical-like groups, so called odd unitary groups. This notion covers the cases of Bak's quadratic groups and Hermitian groups. The normality of the elementary subgroup and the surjective stability of $K_1$-functor are proved in this context.
@article{ZNSL_2003_305_a13,
     author = {V. A. Petrov},
     title = {Odd unitary groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--225},
     year = {2003},
     volume = {305},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/}
}
TY  - JOUR
AU  - V. A. Petrov
TI  - Odd unitary groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 195
EP  - 225
VL  - 305
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/
LA  - ru
ID  - ZNSL_2003_305_a13
ER  - 
%0 Journal Article
%A V. A. Petrov
%T Odd unitary groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 195-225
%V 305
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/
%G ru
%F ZNSL_2003_305_a13
V. A. Petrov. Odd unitary groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 195-225. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a13/

[1] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. Analiz i ego prilozheniya, 5 (1971), 102–110 | Zbl

[2] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21 (1969), 474–494 | DOI | MR | Zbl

[3] E. Abe, “Coverings of twisted Chevalley groups over commutative rings”, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13:371 (1977), 194–218 | MR | Zbl

[4] A. Bak, The stable structure of quadratic modules, Thesis, Columbia University, 1969

[5] A. Bak, $K$-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, 1981 | MR | Zbl

[6] A. Bak, “Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[7] A. Bak, V. Petrov, G. Tang, “Stability for quadratic $K_1$” (to appear) | MR

[8] A. Bak, G. Tang, “Stability for Hermitian $K_1$”, J. Pure Appl. Algebra, 150 (2000), 107–121 | DOI | MR | Zbl

[9] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[10] A. J. Hahn, O. T. O'Meara, The Classical Groups and $K$-Theory, Springer-Verlag, Berlin, 1989 | MR

[11] R. Hazrat, “Dimension theory and non-stable $K_1$ of quadratic modules”, $K$-Theory, 27 (2002), 293–327 | DOI | MR

[12] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[13] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Springer-Verlag, Berlin, 1991 | MR

[14] V. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29:3 (2003) (to appear) | DOI | MR

[15] J. T. Stafford, “Absolute stable rank and quadratic forms over noncommutative rings”, $K$-Theory, 4 (1990), 121–130 | DOI | MR | Zbl

[16] M. R. Stein, “Relativizing functors on rings and algebraic $K$-theory”, J. Algebra, 19:1 (1971), 140–152 | DOI | MR | Zbl

[17] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175 (1995), 526–536 | DOI | MR | Zbl

[18] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | MR | Zbl

[19] G. Tang, “Hermitian groups and K-theory”, $K$-Theory, 13 (1998), 209–267 | DOI | MR | Zbl

[20] W. van der Kallen, B. Magurn, L. N. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl

[21] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[22] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[23] L. N. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR