Continuability of cyclic extensions of complete discrete valuation fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

For a complete discrete valuation field $K$ of characteristic 0 with the residue field of characteristic $p>0$ consider the embedding problem of a given cyclic extension $M/K$ of degree $p$ into a cyclic extension of degree $p^n$ for various $n$. Let $c(M/K)$ be the maximal $n$ such that this embedding problem has a solution. In this paper we consider relations between $c(M/K)$ and $c(LM/L)$ where $L/K$ is a given extension linearly disjoint with $M/K$.
@article{ZNSL_2003_305_a0,
     author = {V. G. Boitsov and I. B. Zhukov},
     title = {Continuability of cyclic extensions of complete discrete valuation fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {305},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/}
}
TY  - JOUR
AU  - V. G. Boitsov
AU  - I. B. Zhukov
TI  - Continuability of cyclic extensions of complete discrete valuation fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 5
EP  - 17
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/
LA  - ru
ID  - ZNSL_2003_305_a0
ER  - 
%0 Journal Article
%A V. G. Boitsov
%A I. B. Zhukov
%T Continuability of cyclic extensions of complete discrete valuation fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 5-17
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/
%G ru
%F ZNSL_2003_305_a0
V. G. Boitsov; I. B. Zhukov. Continuability of cyclic extensions of complete discrete valuation fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/