Continuability of cyclic extensions of complete discrete valuation fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 5-17
Voir la notice de l'article provenant de la source Math-Net.Ru
For a complete discrete valuation field $K$ of characteristic 0 with the residue field of characteristic $p>0$ consider the embedding problem of a given cyclic extension $M/K$ of degree $p$ into a cyclic extension of degree $p^n$ for various $n$. Let $c(M/K)$ be the maximal $n$ such that this embedding problem has a solution. In this paper we consider relations between $c(M/K)$ and $c(LM/L)$ where $L/K$ is a given extension linearly disjoint with $M/K$.
@article{ZNSL_2003_305_a0,
author = {V. G. Boitsov and I. B. Zhukov},
title = {Continuability of cyclic extensions of complete discrete valuation fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
publisher = {mathdoc},
volume = {305},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/}
}
TY - JOUR AU - V. G. Boitsov AU - I. B. Zhukov TI - Continuability of cyclic extensions of complete discrete valuation fields JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 5 EP - 17 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/ LA - ru ID - ZNSL_2003_305_a0 ER -
V. G. Boitsov; I. B. Zhukov. Continuability of cyclic extensions of complete discrete valuation fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a0/