@article{ZNSL_2003_304_a8,
author = {A. Shlapentokh},
title = {Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--167},
year = {2003},
volume = {304},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a8/}
}
TY - JOUR AU - A. Shlapentokh TI - Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 141 EP - 167 VL - 304 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a8/ LA - ru ID - ZNSL_2003_304_a8 ER -
A. Shlapentokh. Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VIII, Tome 304 (2003), pp. 141-167. http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a8/
[1] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon Breach Science Publishers, New York, 1986 | MR
[2] J. W. S Cassels, A. Frölich, Algebraic Number Theory, Thompson Book Co, Washington, DC, 1967 | MR
[3] C. Chevalley, Introduction to the theory of Algebraic Functions of One Variable, Mathematical Surveys, 6, AMS, Providence, RI, 1951 | MR
[4] J.-L. Colliot-Thélène, A. Skorobogatov, P. Swinnerton-Dyer, “Double fibres and double covers: Paucity of rational points”, Acta Arithmetica, 79 (1997), 113–135 | MR | Zbl
[5] G. Cornelissen, K. Zahidi, “Topology of diophantine sets: Remarks on Mazur's conjectures”, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry, Contemporary Mathematics, 270, eds. Jan Denef, Leonard Lipshitz, Thanases Pheidas, Jan Van Geel, AMS, 2000, 253–260 | MR | Zbl
[6] M. Davis, “Hilbert's tenth problem is unsolvable”, American Mathematical Monthly, 80 (1973), 233–269 | DOI | MR | Zbl
[7] M. Davis, Yurii Matijasevich, Julia Robinson, “Hilbert's tenth problem: Diophantine equations: positive aspects of a negative solution”, Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math. Vol. XXVIII, Amer. Math. Soc., 1976, 323–378 | MR
[8] J. Denef, “Hilbert's tenth problem for quadratic rings”, Proc. Amer. Math. Soc., 48 (1975), 214–220 | DOI | MR | Zbl
[9] J. Denef, “The diophantine problem for polynomial rings and fields of rational functions”, Transactions of American Mathematical Society, 242 (1978), 391–399 | DOI | MR | Zbl
[10] J. Denef, “The diophantine problem for polynomial rings of positive characteristic”, Logic Colloquium 78, eds. M. Boffa, D. van Dalen, K. MacAloon, North Holland, 1979, 131–145 | MR
[11] J. Denef, “Diophantine sets of algebraic integers, II”, Transactions of American Mathematical Society, 257 (1980), 227–236 | DOI | MR | Zbl
[12] J. Denef, L. Lipshitz, “Diophantine sets over some rings of algebraic integers”, Journal of London Mathematical Society, II. Ser., 18 (1978), 385–391 | DOI | MR | Zbl
[13] K. Eisenträeger, “Hilbert's tenth problem for algebraic function fields of characteristic,2” (to appear)
[14] M. Fried, M. Jarden, Field Arithmetic, Springer-Verlag, New York, 1986 | MR
[15] G. Janusz, Algebraic Number Fields, Academic Press, New York, 1973 | MR | Zbl
[16] H. K. Kim, F. W. Roush, “Diophantine undecidability of $\mathbb{C}(t_1,t_2)$”, Journal of Algebra, 150:1 (1992), 35–44 | DOI | MR | Zbl
[17] H. K. Kim, F. W. Roush, “Diophantine unsolvability for function fields over certain infinite fields of characteristic $p$”, Journal of Algebra, 152:1 (1992), 230–239 | DOI | MR | Zbl
[18] H. K. Kim, F. W. Roush, “Diophantine unsolvability over p-adic function fields”, Journal of Algebra, 176 (1995), 83–110 | DOI | MR | Zbl
[19] S. Lang, Algebra, Addison Wesley, Reading, MA, 1971 | MR
[20] B. Mazur, “The topology of rational points”, Experimental Mathematics, 1:1 (1992), 35–45 | MR | Zbl
[21] B. Mazur, “Questions of decidability and undecidability in number theory”, Journal of Symbolic Logic, 59:2 (1994), 353–371 | DOI | MR | Zbl
[22] B. Mazur, “Speculation about the topology of rational points: An up-date”, Asterisque, 228, 1995, 165–181 | MR | Zbl
[23] B. Mazur, “Open problems regarding rational points on curves and varieties”, Galois Representations in Arithmetic Algebraic Geometry, Proceedings of the symposium (Durham, UK, July 9–18, 1996), Math. Soc. Lect. Note Ser., 254, eds. A. J. Scholl, R. L. Taylor, Cambridge University Press, Cambridge, 1998, 239–265 | MR | Zbl
[24] Th. Pheidas, “An undecidability result for power series rings of positive characteristic, II”, Proc. Amer. Math. Soc., 100:3 (1987), 526–530 | DOI | MR | Zbl
[25] Th. Pheidas, “Hilbert's tenth problem for a class of rings of algebraic integers”, Proceedings of American Mathematical Societ, 104:2 (1988), 611–620 | DOI | MR | Zbl
[26] Th. Pheidas, “Hilbert's tenth problem for fields of rational functions over finite fields”, Inventiones Mathematicae, 103 (1991), 1–8 | DOI | MR | Zbl
[27] H. Shapiro, A. Shlapentokh, “Diophantine relations between algebraic number fields”, Communications on Pure and Applied Mathematics, 42 (1989), 1113–1122 | DOI | MR | Zbl
[28] A. Shlapentokh, “Extension of Hilbert's tenth problem to some algebraic number fields”, Communications on Pure and Applied Mathematics, 42 (1989), 939–962 | DOI | MR | Zbl
[29] A. Shlapentokh, “Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of $\mathbb Q$”, Annals of Pure and Applied Logic, 68 (1994), 299–325 | DOI | MR | Zbl
[30] A. Shlapentokh, “Algebraic and turing separability of rings”, Journal of Algebra, 185 (1996), 229–257 | DOI | MR | Zbl
[31] A. Shlapentokh, “Diophantine undecidability of algebraic function fields over finite fields of constants”, Journal of Number Theory, 58:2 (1996), 317–342 | DOI | MR | Zbl
[32] A. Shlapentokh, “Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator”, Inventiones Mathematicae, 129 (1997), 489–507 | DOI | MR | Zbl
[33] A. Shlapentokh, “Defining integrality at prime sets of high density in number fields”, Duke Mathematical Journal, 101:1 (2000), 117–134 | DOI | MR | Zbl
[34] A. Shlapentokh, “Hilbert's tenth problem for algebraic function fields over infinite fields of constants of positive characteristic”, Pacific Journal of Mathematics, 193:2 (2000), 463–500 | DOI | MR | Zbl
[35] A. Shlapentokh, “Hilbert's tenth problem over number fields, a survey”, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry, Contemporary Mathematics, 270, eds. Jan Denef, Leonard Lipshitz, Thanases Pheidas, Jan Van Geel, American Mathematical Society, 2000, 107–137 | MR | Zbl
[36] A. Shlapentokh, “Diophantine undecidability of function fields of characteristic greater than 2 finitely generated over a field algebraic over a finite field”, Compositio Mathematica, 132:1 (2002), 99–120 | DOI | MR | Zbl
[37] A. Shlapentokh, “On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2”, Journal of Number Theory, 95 (2002), 227–252 | MR | Zbl
[38] A. Shlapentokh, “A ring version of Mazur's conjecture on topology of rational points”, International Mathematics Research Notices, 7 (2003), 411–423 | DOI | MR | Zbl
[39] C. Videla, “Hilbert's tenth problem for rational function fields in characteristic 2”, Proceedings of the American Mathematical Society, 120:1 (1994), 249–253 | DOI | MR | Zbl
[40] A. Weil, Basic Number Theory, Springer-Verlag, 1974 | MR
[41] K. Zahidi, “The existential theory of real hyperelliptic fields”, Journal of Algebra, 233:1 (2000), 65–86 | MR | Zbl