$S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VIII, Tome 304 (2003), pp. 99-120

Voir la notice de l'article provenant de la source Math-Net.Ru

A notion of a uniform sequent calculus proof is given. It is then shown that a strengthening, $S_{k,\exp}$, of the well-studied bounded arithmetic system $S_k$ of Buss does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ with a uniform proof. A slightly stronger result that $S_{k,\exp}$ cannot prove $\widehat\Sigma_{1,k'}^b=\widehat\Pi_{1,k'}^b$ uniformly for $2\leq k'\leq k$ is also established. A variation on the technique used is then applied to show that $S_{k,\exp}$ is unable to prove Davis–Putnam–Robinson–Matiyasevich theorem. This result is also without any uniformity conditions. Generalization of both these results to higher levels of the Grzegorczyck Hierarchy are then presented.
@article{ZNSL_2003_304_a5,
     author = {Ch. Pollett},
     title = {$S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {304},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a5/}
}
TY  - JOUR
AU  - Ch. Pollett
TI  - $S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 99
EP  - 120
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a5/
LA  - en
ID  - ZNSL_2003_304_a5
ER  - 
%0 Journal Article
%A Ch. Pollett
%T $S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 99-120
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a5/
%G en
%F ZNSL_2003_304_a5
Ch. Pollett. $S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VIII, Tome 304 (2003), pp. 99-120. http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a5/