New models of bounded induction axioms
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VIII, Tome 304 (2003), pp. 13-18

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct models of the integers, to yield: witnessing, independence and separation results for weak systems of bounded induction.
@article{ZNSL_2003_304_a2,
     author = {S. Boughattas and J.-P. Ressayre},
     title = {New models of bounded induction axioms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {304},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a2/}
}
TY  - JOUR
AU  - S. Boughattas
AU  - J.-P. Ressayre
TI  - New models of bounded induction axioms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 13
EP  - 18
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a2/
LA  - en
ID  - ZNSL_2003_304_a2
ER  - 
%0 Journal Article
%A S. Boughattas
%A J.-P. Ressayre
%T New models of bounded induction axioms
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 13-18
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a2/
%G en
%F ZNSL_2003_304_a2
S. Boughattas; J.-P. Ressayre. New models of bounded induction axioms. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VIII, Tome 304 (2003), pp. 13-18. http://geodesic.mathdoc.fr/item/ZNSL_2003_304_a2/