Some applications of Duhamel product
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 145-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Duhamel product of functions $f$ and $g$ is defined by formula $$ (f\circledast g)(x)=\frac{d}{dx}\int^x_0 f(x-t)g(t)\,dt. $$ In the present paper the Duhamel product is used in the study of the spectral multiplicity for direct sums of operators and in the description of cyclic vectors of the restriction of the integration operator in two variables $f(x,y)\mapsto\int^x_0\int^y_0 f(t,\tau)d\tau\,dt$ to its invariant subspace consisting of functions that depend only on the product $xy$.
@article{ZNSL_2003_303_a7,
     author = {M. T. Karaev},
     title = {Some applications of {Duhamel} product},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--160},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/}
}
TY  - JOUR
AU  - M. T. Karaev
TI  - Some applications of Duhamel product
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 145
EP  - 160
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/
LA  - ru
ID  - ZNSL_2003_303_a7
ER  - 
%0 Journal Article
%A M. T. Karaev
%T Some applications of Duhamel product
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 145-160
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/
%G ru
%F ZNSL_2003_303_a7
M. T. Karaev. Some applications of Duhamel product. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 145-160. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/

[1] N. M. Wigley, “The Duhamel product of analytic functions”, Duke Math. J., 41 (1974), 211–217 | DOI | MR | Zbl

[2] Ya. Mikusinskii, Operatornoe ischislenie, IL, M., 1956

[3] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[4] M. T. Karaev, “Ispolzovanie svertki dlya dokazatelstva odnokletochnosti”, Zap. nauchn. semin. LOMI, 135, 1984, 66–68 | MR | Zbl

[5] M. T. Karaev, “Ispolzovanie proizvedeniya Dyuamelya v opisanii invariantnykh podprostranstv”, Trudy IMM AN Azerb., 1995, 137–146

[6] I. Dimovski, Convolution calculus, Sofia, 1982

[7] M. T. Karaev, “Ispolzovanie proizvedeniya Dyuamelya v zadachakh bazisnosti”, Izv. AN Azerb. SSR, Ser. fiz.-tekhn. matem. nauk, 1990, no. 3–6, 145–150

[8] M. K. Fage, N. I. Nagnibida, Problema ekvivalentnosti obyknovennykh lineinykh differentsialnykh operatorov, Nauka, Novosibirsk, 1987 | MR | Zbl

[9] M. T. Karaev, Slozhenie kratnostei spektra i invariantnye podprostranstva, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, Baku, 1991 | Zbl

[10] M. M. Malamud, “O vosproizvodyaschikh podprostranstvakh volterrovykh operatorov”, Dokl. RAN, 351:4 (1996), 454–458 | MR | Zbl

[11] J. Mikusinski, “Convolution of functions of several variables”, Stidua Math., 20 (1961), 253–259 | MR

[12] W. F. Donoghue, “The lattice of invariant subspaces of a completely continuous quasinilpotent transformations”, Pacific J. Math, 7:2 (1957), 1031–1035 | MR | Zbl

[13] A. Atzmon, H. Manos, “The integration operator in two variables”, Proc. Amer. Math. Soc., 119:2 (1993), 513–523 | DOI | MR | Zbl