@article{ZNSL_2003_303_a7,
author = {M. T. Karaev},
title = {Some applications of {Duhamel} product},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--160},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/}
}
M. T. Karaev. Some applications of Duhamel product. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 145-160. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a7/
[1] N. M. Wigley, “The Duhamel product of analytic functions”, Duke Math. J., 41 (1974), 211–217 | DOI | MR | Zbl
[2] Ya. Mikusinskii, Operatornoe ischislenie, IL, M., 1956
[3] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[4] M. T. Karaev, “Ispolzovanie svertki dlya dokazatelstva odnokletochnosti”, Zap. nauchn. semin. LOMI, 135, 1984, 66–68 | MR | Zbl
[5] M. T. Karaev, “Ispolzovanie proizvedeniya Dyuamelya v opisanii invariantnykh podprostranstv”, Trudy IMM AN Azerb., 1995, 137–146
[6] I. Dimovski, Convolution calculus, Sofia, 1982
[7] M. T. Karaev, “Ispolzovanie proizvedeniya Dyuamelya v zadachakh bazisnosti”, Izv. AN Azerb. SSR, Ser. fiz.-tekhn. matem. nauk, 1990, no. 3–6, 145–150
[8] M. K. Fage, N. I. Nagnibida, Problema ekvivalentnosti obyknovennykh lineinykh differentsialnykh operatorov, Nauka, Novosibirsk, 1987 | MR | Zbl
[9] M. T. Karaev, Slozhenie kratnostei spektra i invariantnye podprostranstva, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, Baku, 1991 | Zbl
[10] M. M. Malamud, “O vosproizvodyaschikh podprostranstvakh volterrovykh operatorov”, Dokl. RAN, 351:4 (1996), 454–458 | MR | Zbl
[11] J. Mikusinski, “Convolution of functions of several variables”, Stidua Math., 20 (1961), 253–259 | MR
[12] W. F. Donoghue, “The lattice of invariant subspaces of a completely continuous quasinilpotent transformations”, Pacific J. Math, 7:2 (1957), 1031–1035 | MR | Zbl
[13] A. Atzmon, H. Manos, “The integration operator in two variables”, Proc. Amer. Math. Soc., 119:2 (1993), 513–523 | DOI | MR | Zbl