On some identities for the elements of a symmetric matrix
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 119-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\operatorname{Sym}(n)$ be the space of $n$-dimensional real symmetric matrices, and let $X\in\operatorname{Sym}(n)$. The matrices $E,X,X^2,\dots,X^{n-1}$ can be regarded as vectors of Euclidean space of dimension $n^2$. Denote by $V(E,X,\dots,X^{n-1})$ the volume of the parallelepiped built on these vectors. It is proved that $$ V^2(E,X,\dots,X^{n-1})=D(X), $$ where $D(X)$ is the discriminant of the characteristic polynomial of the matrix $X$. Two classes of smooth maps of the space $\operatorname{Sym}(n)$ are described.
@article{ZNSL_2003_303_a6,
author = {N. V. Ilyushechkin},
title = {On some identities for the elements of a~symmetric matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--144},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a6/}
}
N. V. Ilyushechkin. On some identities for the elements of a symmetric matrix. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 119-144. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a6/
[1] A. I. Lure, Teoriya uprugosti, Nauka, M., 1970
[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[3] M. M. Postnikov, Lektsii po geometrii. Semestr II. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl
[4] Malgranzh, Idealy differentsiruemykh funktsii, Mir, M., 1968
[5] N. V. Ilyushechkin, “Ob odnom klasse gladkikh matrichnoznachnykh funktsii”, UMN, 40:1 (1985), 201–202 | MR | Zbl
[6] N. V. Ilyushechkin, “Diskriminant kharakteristicheskogo mnogochlena normalnoi matritsy”, Matem. zametki, 51:3 (1992), 16–23 \item{7.} | MR | Zbl