Weakly cyclic vectors with a~given modulus
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 111-118

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H^p$ be the Hardy space in the polydisc. Denote by $\mathcal P$ the set of all holomorphic polynomials. A vector $f\in H^p$ is called weakly cyclic if the product $f\mathcal P$ is weakly dense in $H^p$, $0$. We construct weakly cyclic vectors with a prescribed lower semicontinuous modulus of the boundary values.
@article{ZNSL_2003_303_a5,
     author = {E. Doubtsov},
     title = {Weakly cyclic vectors with a~given modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Weakly cyclic vectors with a~given modulus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 111
EP  - 118
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/
LA  - ru
ID  - ZNSL_2003_303_a5
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Weakly cyclic vectors with a~given modulus
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 111-118
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/
%G ru
%F ZNSL_2003_303_a5
E. Doubtsov. Weakly cyclic vectors with a~given modulus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 111-118. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/