Weakly cyclic vectors with a~given modulus
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 111-118
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H^p$ be the Hardy space in the polydisc. Denote by $\mathcal P$ the set of all holomorphic polynomials. A vector $f\in H^p$ is called weakly cyclic if the product $f\mathcal P$ is weakly dense in $H^p$, $0$. We construct weakly cyclic vectors with a prescribed lower semicontinuous modulus of the boundary values.
			
            
            
            
          
        
      @article{ZNSL_2003_303_a5,
     author = {E. Doubtsov},
     title = {Weakly cyclic vectors with a~given modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/}
}
                      
                      
                    E. Doubtsov. Weakly cyclic vectors with a~given modulus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 111-118. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a5/