Bounded cyclic functions in the ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110
Cet article a éte moissonné depuis la source Math-Net.Ru
With the help of the $H^2$-corona theorem we obtain a condition sufficient for cyclicity in the Bergman space $A^1$ in the ball.
@article{ZNSL_2003_303_a4,
author = {E. Doubtsov},
title = {Bounded cyclic functions in the ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--110},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/}
}
E. Doubtsov. Bounded cyclic functions in the ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/
[1] J. W. Roberts, “Cyclic inner functions in the Bergman spaces and weak outer functions in $H^p$ $(0
1)$”, Illinois J. Math., 29 (1985), 25–38 | MR | Zbl[2] B. Korenblum, “A Beurling-type theorem”, Acta Math., 138 (1977), 265–293 | DOI | MR | Zbl
[3] E. S. Dubtsov, “Slabo vneshnie vnutrennie funktsii”, Funkts. anal. i ego pril., 37 (2003), 7–15 | MR | Zbl
[4] M. Andersson, “On the $H^p$ corona problem”, Bull. Sci. Math., 118 (1994), 287–306 | MR | Zbl
[5] A. B. Aleksandrov, “Sobstvennye golomorfnye otobrazheni iz shara v polidisk”, DAN SSSR, 286 (1986), 11–15 | MR | Zbl