Bounded cyclic functions in the ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

With the help of the $H^2$-corona theorem we obtain a condition sufficient for cyclicity in the Bergman space $A^1$ in the ball.
@article{ZNSL_2003_303_a4,
     author = {E. Doubtsov},
     title = {Bounded cyclic functions in the ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--110},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Bounded cyclic functions in the ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 102
EP  - 110
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/
LA  - ru
ID  - ZNSL_2003_303_a4
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Bounded cyclic functions in the ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 102-110
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/
%G ru
%F ZNSL_2003_303_a4
E. Doubtsov. Bounded cyclic functions in the ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/

[1] J. W. Roberts, “Cyclic inner functions in the Bergman spaces and weak outer functions in $H^p$ $(0

1)$”, Illinois J. Math., 29 (1985), 25–38 | MR | Zbl

[2] B. Korenblum, “A Beurling-type theorem”, Acta Math., 138 (1977), 265–293 | DOI | MR | Zbl

[3] E. S. Dubtsov, “Slabo vneshnie vnutrennie funktsii”, Funkts. anal. i ego pril., 37 (2003), 7–15 | MR | Zbl

[4] M. Andersson, “On the $H^p$ corona problem”, Bull. Sci. Math., 118 (1994), 287–306 | MR | Zbl

[5] A. B. Aleksandrov, “Sobstvennye golomorfnye otobrazheni iz shara v polidisk”, DAN SSSR, 286 (1986), 11–15 | MR | Zbl