Bounded cyclic functions in the ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the $H^2$-corona theorem we obtain a condition sufficient for cyclicity in the Bergman space $A^1$ in the ball.
@article{ZNSL_2003_303_a4,
     author = {E. Doubtsov},
     title = {Bounded cyclic functions in the ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Bounded cyclic functions in the ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 102
EP  - 110
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/
LA  - ru
ID  - ZNSL_2003_303_a4
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Bounded cyclic functions in the ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 102-110
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/
%G ru
%F ZNSL_2003_303_a4
E. Doubtsov. Bounded cyclic functions in the ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 102-110. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a4/