Zero-sets for $H^\infty$-functions on hyperplanes in~$\mathbb B^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 272-278

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb B^n$ be the unit ball in $\mathbb C^n$, $n\ge2$. We put $T_a=\{z\in\mathbb B^n:(z,a)=|a|^2\}$ for $a\in\mathbb B^n$ and $T_A=\bigcup\limits_{a\in A}T_a$ for a discrete in $\mathbb B^n$ set $A$. We find a sharp necessary condition for a set $A$ to be a part of the zero-set for a function in $H^\infty(\mathbb B^n)$.
@article{ZNSL_2003_303_a13,
     author = {N. A. Shirokov},
     title = {Zero-sets for $H^\infty$-functions  on hyperplanes in~$\mathbb B^n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--278},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a13/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Zero-sets for $H^\infty$-functions  on hyperplanes in~$\mathbb B^n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 272
EP  - 278
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a13/
LA  - ru
ID  - ZNSL_2003_303_a13
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Zero-sets for $H^\infty$-functions  on hyperplanes in~$\mathbb B^n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 272-278
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a13/
%G ru
%F ZNSL_2003_303_a13
N. A. Shirokov. Zero-sets for $H^\infty$-functions  on hyperplanes in~$\mathbb B^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 272-278. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a13/