@article{ZNSL_2003_303_a12,
author = {D. S. Chelkak},
title = {The asymptotics of spectral data of the harmonic oscillator perturbed by a~potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {223--271},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/}
}
D. S. Chelkak. The asymptotics of spectral data of the harmonic oscillator perturbed by a potential. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 223-271. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/
[1] H. P. McKean, E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82:4 (1981/82), 471–495 | DOI | MR
[2] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, 1987 | MR | Zbl
[3] G. Beitmen, A. Erdeii, Vysshie trantsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortonalnye mnogochleny, Nauka, Moskva, 1974
[4] D. Chelkak, P. Kargaev, E. Korotyaev, Inverse problem for harmonic oscillator perturbed by potential, characterization, Preprint SFB 288, No 573, Berlin, 2002 | MR
[5] D. Chelkak, P. Kargaev, E. Korotyaev, “An Inverse Problem for an Harmonic Oscillator Perturbed by Potential: Uniqueness”, Lett. Math. Phys., 64:1 (2003), 7–21 | DOI | MR | Zbl
[6] F. Olver, “Two inequalities for parabolic cylinder functions”, Proc. Cambridge Philos. Soc., 57 (1961), 811–822 | DOI | MR | Zbl
[7] M. V. Fedoryuk, Asimptoticheskie metody dlya obyknovennykh differentsialnykh uravnenii, Nauka, Moskva, 1983 | MR | Zbl