The asymptotics of spectral data of the harmonic oscillator perturbed by a potential
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 223-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The asymptotics of spectral data of the perturbed harmonic oscillator $-y''+x^2y+q(x)y$ are obtained for the potentials $q(x)$ such that $q',xq\in L^2(\mathbb R)$. These results are important for the solution of the corresponding inverse spectral problem.
@article{ZNSL_2003_303_a12,
     author = {D. S. Chelkak},
     title = {The asymptotics of spectral data of the harmonic oscillator perturbed by a~potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {223--271},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/}
}
TY  - JOUR
AU  - D. S. Chelkak
TI  - The asymptotics of spectral data of the harmonic oscillator perturbed by a potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 223
EP  - 271
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/
LA  - ru
ID  - ZNSL_2003_303_a12
ER  - 
%0 Journal Article
%A D. S. Chelkak
%T The asymptotics of spectral data of the harmonic oscillator perturbed by a potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 223-271
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/
%G ru
%F ZNSL_2003_303_a12
D. S. Chelkak. The asymptotics of spectral data of the harmonic oscillator perturbed by a potential. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 223-271. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a12/

[1] H. P. McKean, E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82:4 (1981/82), 471–495 | DOI | MR

[2] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, 1987 | MR | Zbl

[3] G. Beitmen, A. Erdeii, Vysshie trantsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortonalnye mnogochleny, Nauka, Moskva, 1974

[4] D. Chelkak, P. Kargaev, E. Korotyaev, Inverse problem for harmonic oscillator perturbed by potential, characterization, Preprint SFB 288, No 573, Berlin, 2002 | MR

[5] D. Chelkak, P. Kargaev, E. Korotyaev, “An Inverse Problem for an Harmonic Oscillator Perturbed by Potential: Uniqueness”, Lett. Math. Phys., 64:1 (2003), 7–21 | DOI | MR | Zbl

[6] F. Olver, “Two inequalities for parabolic cylinder functions”, Proc. Cambridge Philos. Soc., 57 (1961), 811–822 | DOI | MR | Zbl

[7] M. V. Fedoryuk, Asimptoticheskie metody dlya obyknovennykh differentsialnykh uravnenii, Nauka, Moskva, 1983 | MR | Zbl