The diagonal mapping in general Hardy spaces in the polidisk
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 218-222

Voir la notice de l'article provenant de la source Math-Net.Ru

For $p=(p_1,p_2)$, $1$, $i=1,2$, let $H^{p_1,p_2}$ be the Hardy class on the bidisk with mixed norm. We give a complete discription of all holomorphic function $\varphi$ in the unit disk that are representable in the form $\varphi(z)=f(z,z)$, $|z|1$, with $f\in H^{p_1,p_2}$.
@article{ZNSL_2003_303_a11,
     author = {N. A. Chasova and F. A. Shamoyan},
     title = {The diagonal mapping in general {Hardy} spaces in the polidisk},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--222},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/}
}
TY  - JOUR
AU  - N. A. Chasova
AU  - F. A. Shamoyan
TI  - The diagonal mapping in general Hardy spaces in the polidisk
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 218
EP  - 222
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/
LA  - ru
ID  - ZNSL_2003_303_a11
ER  - 
%0 Journal Article
%A N. A. Chasova
%A F. A. Shamoyan
%T The diagonal mapping in general Hardy spaces in the polidisk
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 218-222
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/
%G ru
%F ZNSL_2003_303_a11
N. A. Chasova; F. A. Shamoyan. The diagonal mapping in general Hardy spaces in the polidisk. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 218-222. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/