The diagonal mapping in general Hardy spaces in the polidisk
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 218-222
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For $p=(p_1,p_2)$, $1$, $i=1,2$, let $H^{p_1,p_2}$ be the  Hardy class on the bidisk with mixed norm. We give a complete discription of all holomorphic function $\varphi$ in the unit disk that are  representable in the form $\varphi(z)=f(z,z)$, $|z|1$, with $f\in H^{p_1,p_2}$.
			
            
            
            
          
        
      @article{ZNSL_2003_303_a11,
     author = {N. A. Chasova and F. A. Shamoyan},
     title = {The diagonal mapping in general {Hardy} spaces in the polidisk},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--222},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/}
}
                      
                      
                    N. A. Chasova; F. A. Shamoyan. The diagonal mapping in general Hardy spaces in the polidisk. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 218-222. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a11/