Estimates of the distances between sums of the spaces $\ell^p_n$, II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 203-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study classical, modified, and weak Banach–Mazur distances between sums of $\ell^p_n$ spaces. We calculate explicitly the classical and weak Banach–Mazur distances between sums of $\ell^p_n$-spaces and establish bounds for the ratios of these distances between sums of $\ell^p_n$-spaces.
@article{ZNSL_2003_303_a10,
     author = {A. I. Khrabrov},
     title = {Estimates of the distances between sums of the spaces $\ell^p_n${,~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--217},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/}
}
TY  - JOUR
AU  - A. I. Khrabrov
TI  - Estimates of the distances between sums of the spaces $\ell^p_n$, II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 203
EP  - 217
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/
LA  - ru
ID  - ZNSL_2003_303_a10
ER  - 
%0 Journal Article
%A A. I. Khrabrov
%T Estimates of the distances between sums of the spaces $\ell^p_n$, II
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 203-217
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/
%G ru
%F ZNSL_2003_303_a10
A. I. Khrabrov. Estimates of the distances between sums of the spaces $\ell^p_n$, II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 203-217. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/

[1] V. I. Gurarii, M. I. Kadets, V. I. Matsaev, “O rasstoyaniyakh mezhdu konechnomernymi analogami prostranstv $L^p$”, Mat. sb., 70(112):4 (1966), 481–489 | MR | Zbl

[2] E. V. Gluskin, “Diametr kompakta Minkovskogo primerno raven $n$”, Funkts. an. i ego pril., 15:1 (1981), 72–73 | MR | Zbl

[3] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[4] A. I. Khrabrov, “Otsenki rasstoyanii mezhdu summami prostranstv $\ell^p_n$”, Vestn. S.-Peterburg. un-ta. Ser. 1, 3:17 (2000), 56–62

[5] A. I. Khrabrov, “Obobschennye ob'emnye otnosheniya i rasstoyanie Banakha–Mazura”, Mat. Zametki, 70:6 (2001), 918–926 | MR | Zbl

[6] A. I. Khrabrov, “Ekstremalnye ob'emnye otnosheniya dlya summ normirovannykh prostranstv”, Problemy matematicheskogo analiza, 21, Nauchnaya kniga, Novosibirsk, 2000, 264–275

[7] A. I. Khrabrov, “Rasstoyaniya mezhdu prostranstvami s bezuslovnymi bazisami”, Problemy matematicheskogo analiza, 23, Tamara Rozhkovskaya, Novosibirsk, 2001, 206–220

[8] G. Baumbach, W. Linde, “Asymptotic behaviour of $p$-absolutely summing norms of identity operators”, Math. Nachr., 78 (1977), 193–196 | DOI | MR | Zbl

[9] F. W. Levi, “Über zvei Sätze von Herrn Besicovitch”, Arch. Math., 3 (1952), 125–129 | DOI | MR | Zbl

[10] J. Lindenstrauss, A. Szankowski, “The relation between the distance and the weak distance for spaces with a symmetric basis”, Geometrical aspects of functional analysis (1985/86), Lect. Notes Math., 1267, Springer, Berlin–New York, 1987, 21–38 | MR

[11] J. Lindenstrauss, A. Szankowski, “The weak distance between Banach spaces with a symmetric basis”, J. Reine Angew. Math., 373 (1987), 108–147 | MR | Zbl

[12] A. M. Macbeath, “A compactness theorem for affine equivalence-classes of convex regions”, Canad. J. Math., 3:1 (1951), 54–61 | DOI | MR | Zbl

[13] M. Rudelson, “Estimates of the weak distance between finite-dimensional Banach spaces”, Israel J. Math., 89:1–3 (1995), 189–204 | DOI | MR | Zbl

[14] N. Tomczak-Jaegermann, “The weak distance between finite-dimensional Banach spaces”, Math. Nachr., 119 (1984), 291–307 | DOI | MR | Zbl