@article{ZNSL_2003_303_a10,
author = {A. I. Khrabrov},
title = {Estimates of the distances between sums of the spaces $\ell^p_n${,~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--217},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/}
}
A. I. Khrabrov. Estimates of the distances between sums of the spaces $\ell^p_n$, II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 203-217. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a10/
[1] V. I. Gurarii, M. I. Kadets, V. I. Matsaev, “O rasstoyaniyakh mezhdu konechnomernymi analogami prostranstv $L^p$”, Mat. sb., 70(112):4 (1966), 481–489 | MR | Zbl
[2] E. V. Gluskin, “Diametr kompakta Minkovskogo primerno raven $n$”, Funkts. an. i ego pril., 15:1 (1981), 72–73 | MR | Zbl
[3] A. Pich, Operatornye idealy, Mir, M., 1982 | MR
[4] A. I. Khrabrov, “Otsenki rasstoyanii mezhdu summami prostranstv $\ell^p_n$”, Vestn. S.-Peterburg. un-ta. Ser. 1, 3:17 (2000), 56–62
[5] A. I. Khrabrov, “Obobschennye ob'emnye otnosheniya i rasstoyanie Banakha–Mazura”, Mat. Zametki, 70:6 (2001), 918–926 | MR | Zbl
[6] A. I. Khrabrov, “Ekstremalnye ob'emnye otnosheniya dlya summ normirovannykh prostranstv”, Problemy matematicheskogo analiza, 21, Nauchnaya kniga, Novosibirsk, 2000, 264–275
[7] A. I. Khrabrov, “Rasstoyaniya mezhdu prostranstvami s bezuslovnymi bazisami”, Problemy matematicheskogo analiza, 23, Tamara Rozhkovskaya, Novosibirsk, 2001, 206–220
[8] G. Baumbach, W. Linde, “Asymptotic behaviour of $p$-absolutely summing norms of identity operators”, Math. Nachr., 78 (1977), 193–196 | DOI | MR | Zbl
[9] F. W. Levi, “Über zvei Sätze von Herrn Besicovitch”, Arch. Math., 3 (1952), 125–129 | DOI | MR | Zbl
[10] J. Lindenstrauss, A. Szankowski, “The relation between the distance and the weak distance for spaces with a symmetric basis”, Geometrical aspects of functional analysis (1985/86), Lect. Notes Math., 1267, Springer, Berlin–New York, 1987, 21–38 | MR
[11] J. Lindenstrauss, A. Szankowski, “The weak distance between Banach spaces with a symmetric basis”, J. Reine Angew. Math., 373 (1987), 108–147 | MR | Zbl
[12] A. M. Macbeath, “A compactness theorem for affine equivalence-classes of convex regions”, Canad. J. Math., 3:1 (1951), 54–61 | DOI | MR | Zbl
[13] M. Rudelson, “Estimates of the weak distance between finite-dimensional Banach spaces”, Israel J. Math., 89:1–3 (1995), 189–204 | DOI | MR | Zbl
[14] N. Tomczak-Jaegermann, “The weak distance between finite-dimensional Banach spaces”, Math. Nachr., 119 (1984), 291–307 | DOI | MR | Zbl