The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 34-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical Carleman–Goluzin–Krylov formula recovers an $H^1$-function from its boundary values on an arc. We study this formula when it is applied to Lipschitz spaces of order $\alpha\le1$ and to higher order smoothness spaces. The rate of convergence is estimated and some (counter-) examples are given.
@article{ZNSL_2003_303_a1,
     author = {V. A. Bart},
     title = {The {Carleman{\textendash}Goluzin{\textendash}Krylov} formula and analytic functions smooth up to the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--70},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/}
}
TY  - JOUR
AU  - V. A. Bart
TI  - The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 34
EP  - 70
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/
LA  - ru
ID  - ZNSL_2003_303_a1
ER  - 
%0 Journal Article
%A V. A. Bart
%T The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 34-70
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/
%G ru
%F ZNSL_2003_303_a1
V. A. Bart. The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 34-70. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/

[1] G. M. Goluzin, V. I. Krylov, “Obobschennaya formula Karlemana i ee prilozhenie k analiticheskomu prodolzheniyu funktsii”, Mat. sb., 40:2 (1933), 144–149 | Zbl

[2] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR | Zbl

[3] R. J. Partington, Interpolation, Identification, and Sampling, Clarendon Press, Oxford, 1997 | MR | Zbl

[4] I. V. Videnskii, E. M. Gavurina, V. P. Khavin, “Analogi interpolyatsionnoi formuly Karlemana–Goluzina–Krylova”, Teoriya operatorov i teoriya funktsii, 1983, no. 1, 21–31 | MR

[5] V. A. Bart, V. P. Khavin, “Teoremy Sege–Kolmgorova–Kreina o vesovoi trigonometricheskoi approksimatsi”, Ukr. mat. zhurn., 46:1 (1994), 100–127 | MR | Zbl

[6] V. A. Bart, “Otsenki norm operatorov Karlemana–Goluzina–Krylova v disk-algebre i prostranstve Khardi $H^1$”, PMA, 21 (2000), 45–67 | Zbl

[7] I. P. Natanson, “O priblizhenii k mnogokratno differentsiruemym periodicheskim funktsiyam pri pomoschi singulyarnykh integralov”, DAN SSSR, 82:2 (1952), 337–339 | MR | Zbl

[8] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[10] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhteoretizdat, M.-L., 1950

[11] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[13] P. Duren, Theory of $H^p$ Spaces, New York, 1970 | MR | Zbl