@article{ZNSL_2003_303_a1,
author = {V. A. Bart},
title = {The {Carleman{\textendash}Goluzin{\textendash}Krylov} formula and analytic functions smooth up to the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--70},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/}
}
V. A. Bart. The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 34-70. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/
[1] G. M. Goluzin, V. I. Krylov, “Obobschennaya formula Karlemana i ee prilozhenie k analiticheskomu prodolzheniyu funktsii”, Mat. sb., 40:2 (1933), 144–149 | Zbl
[2] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR | Zbl
[3] R. J. Partington, Interpolation, Identification, and Sampling, Clarendon Press, Oxford, 1997 | MR | Zbl
[4] I. V. Videnskii, E. M. Gavurina, V. P. Khavin, “Analogi interpolyatsionnoi formuly Karlemana–Goluzina–Krylova”, Teoriya operatorov i teoriya funktsii, 1983, no. 1, 21–31 | MR
[5] V. A. Bart, V. P. Khavin, “Teoremy Sege–Kolmgorova–Kreina o vesovoi trigonometricheskoi approksimatsi”, Ukr. mat. zhurn., 46:1 (1994), 100–127 | MR | Zbl
[6] V. A. Bart, “Otsenki norm operatorov Karlemana–Goluzina–Krylova v disk-algebre i prostranstve Khardi $H^1$”, PMA, 21 (2000), 45–67 | Zbl
[7] I. P. Natanson, “O priblizhenii k mnogokratno differentsiruemym periodicheskim funktsiyam pri pomoschi singulyarnykh integralov”, DAN SSSR, 82:2 (1952), 337–339 | MR | Zbl
[8] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[10] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhteoretizdat, M.-L., 1950
[11] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[13] P. Duren, Theory of $H^p$ Spaces, New York, 1970 | MR | Zbl