The Carleman--Goluzin--Krylov formula and analytic functions smooth up to the boundary
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 34-70
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Carleman–Goluzin–Krylov formula recovers an $H^1$-function from its boundary values on an arc. We study this formula when it is applied to Lipschitz spaces of order $\alpha\le1$ and to higher order smoothness spaces. The rate of convergence is estimated and some (counter-) examples are given.
@article{ZNSL_2003_303_a1,
author = {V. A. Bart},
title = {The {Carleman--Goluzin--Krylov} formula and analytic functions smooth up to the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--70},
publisher = {mathdoc},
volume = {303},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/}
}
V. A. Bart. The Carleman--Goluzin--Krylov formula and analytic functions smooth up to the boundary. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 34-70. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a1/