@article{ZNSL_2003_303_a0,
author = {A. D. Baranov},
title = {On estimates of the $L^p$-norms of derivatives in spaces of entire functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--33},
year = {2003},
volume = {303},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/}
}
A. D. Baranov. On estimates of the $L^p$-norms of derivatives in spaces of entire functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 5-33. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/
[1] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[2] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[3] A. D. Baranov, “Differentsirovanie v prostranstvakh de Branzha i teoremy vlozheniya”, Problemy matematicheskogo analiza, 19 (1999), 27–68
[4] A. D. Baranov, “Neravenstvo Bernshteina v prostranstvakh de Branzha i teoremy vlozheniya”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 9, 2001, 23–53 | Zbl
[5] L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl
[6] Yu. I. Lyubarskii, K. Seip, “Weighted Paley–Wiener spaces”, J. Amer. Math. Soc., 15:4 (2002), 979–1006 | DOI | MR | Zbl
[7] J. Ortega-Cerda, K. Seip, “Fourier frames”, Ann. of Math. (2), 155:3 (2002), 789–806 | DOI | MR | Zbl
[8] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[9] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[10] Yu. A. Brudnyi, E. A. Gorin, Izometricheskie predstavleniya i differentsialnye neravenstva, Yaroslavl, 1981
[11] K. M. Dyakonov, “Tselye funktsii eksponentsialnogo tipa i modelnye podprostranstva v $H^p$”, Zap. nauchn. semin. LOMI, 190, 1991, 81–100 | MR
[12] K. M. Dyakonov, “Differentiation in star-invariant subspaces. I: Boundedness and compactness”, J. Funct. Anal., 192:2 (2002), 364–386 | DOI | MR | Zbl
[13] W. S. Cohn, “Carleson measures for functions orthogonal to invariant subspaces”, Pacific J. Math., 103:2 (1982), 347–364 | MR | Zbl
[14] W. S. Cohn, “Carleson measures and operators on star-invariant subspaces”, J. Oper. Theory, 15:1 (1986), 181–202 | MR | Zbl
[15] A. L. Volberg, S. R. Treil, “Teoremy vlozheniya dlya invariantnykh podprostranstv operatora obratnogo sdviga”, Zap. nauchn. semin. LOMI, 149, 1986, 38–51 | MR
[16] A. B. Aleksandrov, “Prostoe dokazatelstvo teoremy Volberga–Treilya o vlozhenii koinvariantnykh podprostranstv operatora sdviga”, Zap. nauchn. semin. LOMI, 217, 1994, 16–25
[17] A. B. Aleksandrov, “On embedding theorems for coinvariant subspaces of the shift operator, I”, Complex analysis, operators, and related topics, Operator Theory: Advances and Applications, 113, Basel, 2000, 45–64 | MR | Zbl
[18] A. B. Aleksandrov, “O teoremakh vlozheniya dlya koinvariantnykh podprostranstv operatora sdviga, II”, Zap. nauchn. semin. POMI, 262, 1999, 5–48 | MR | Zbl
[19] K. M. Dyakonov, “Embedding theorems for star-invariant subspaces generated by smooth inner functions”, J. Funct. Anal., 157:2 (1998), 588–598 | DOI | MR | Zbl
[20] A. D. Baranov, “Vesovye neravenstva Bernshteina i teoremy vlozheniya dlya modelnykh podprostranstv”, Algebra i Analiz, 15:5 (2003), 138–168 | MR | Zbl
[21] F. Nazarov, A. Volberg, “The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces $K_\theta$”, J. Anal. Math., 87 (2002), 385–414 | DOI | MR | Zbl
[22] W. S. Cohn, “Radial limits and star invariant subspaces of bounded mean oscillation”, Amer. J. Math., 108 (1986), 719–749 | DOI | MR | Zbl
[23] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl
[24] Yu. I. Lyubarskii, K. Seip, “Complete interpolation sequences for Paley–Wiener spaces and Muckenhoupt's ($A_p$) condition”, Rev. Mat. Iber., 13:2 (1997), 361–376 | MR | Zbl