On estimates of the $L^p$-norms of derivatives in spaces of entire functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 5-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present work, weighted $L^p$-norms of derivatives are studied in the spaces of entire functions $\mathcal H^p(E)$ generalizing the de Branges spaces. A description of the spaces $\mathcal H^p(E)$ such that the differentiation operator $\mathcal D\colon F\mapsto F'$ is bounded in $\mathcal H^p(E)$ is obtained in terms of the generating entire function $E$ of the Hermite–Biehler class. It is shown that for a broad class of the spaces $\mathcal H^p(E)$ the boundedness criterion is given by the condition $E'/E\in L^\infty(\mathbb R)$. In the general case a necessary and sufficient condition is found in terms of a certain embedding theorem for the space $\mathcal H^p(E)$; moreover, the boundedness of the operator $\mathcal D$ depends essentially on the exponential $p$. Also we obtain a number of conditions sufficient for the compactness of the differentiation operator in $\mathcal H^p(E)$.
@article{ZNSL_2003_303_a0,
     author = {A. D. Baranov},
     title = {On estimates of the $L^p$-norms of derivatives in spaces of entire functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--33},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - On estimates of the $L^p$-norms of derivatives in spaces of entire functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 5
EP  - 33
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/
LA  - ru
ID  - ZNSL_2003_303_a0
ER  - 
%0 Journal Article
%A A. D. Baranov
%T On estimates of the $L^p$-norms of derivatives in spaces of entire functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 5-33
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/
%G ru
%F ZNSL_2003_303_a0
A. D. Baranov. On estimates of the $L^p$-norms of derivatives in spaces of entire functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 5-33. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a0/

[1] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[2] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[3] A. D. Baranov, “Differentsirovanie v prostranstvakh de Branzha i teoremy vlozheniya”, Problemy matematicheskogo analiza, 19 (1999), 27–68

[4] A. D. Baranov, “Neravenstvo Bernshteina v prostranstvakh de Branzha i teoremy vlozheniya”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 9, 2001, 23–53 | Zbl

[5] L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[6] Yu. I. Lyubarskii, K. Seip, “Weighted Paley–Wiener spaces”, J. Amer. Math. Soc., 15:4 (2002), 979–1006 | DOI | MR | Zbl

[7] J. Ortega-Cerda, K. Seip, “Fourier frames”, Ann. of Math. (2), 155:3 (2002), 789–806 | DOI | MR | Zbl

[8] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[9] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[10] Yu. A. Brudnyi, E. A. Gorin, Izometricheskie predstavleniya i differentsialnye neravenstva, Yaroslavl, 1981

[11] K. M. Dyakonov, “Tselye funktsii eksponentsialnogo tipa i modelnye podprostranstva v $H^p$”, Zap. nauchn. semin. LOMI, 190, 1991, 81–100 | MR

[12] K. M. Dyakonov, “Differentiation in star-invariant subspaces. I: Boundedness and compactness”, J. Funct. Anal., 192:2 (2002), 364–386 | DOI | MR | Zbl

[13] W. S. Cohn, “Carleson measures for functions orthogonal to invariant subspaces”, Pacific J. Math., 103:2 (1982), 347–364 | MR | Zbl

[14] W. S. Cohn, “Carleson measures and operators on star-invariant subspaces”, J. Oper. Theory, 15:1 (1986), 181–202 | MR | Zbl

[15] A. L. Volberg, S. R. Treil, “Teoremy vlozheniya dlya invariantnykh podprostranstv operatora obratnogo sdviga”, Zap. nauchn. semin. LOMI, 149, 1986, 38–51 | MR

[16] A. B. Aleksandrov, “Prostoe dokazatelstvo teoremy Volberga–Treilya o vlozhenii koinvariantnykh podprostranstv operatora sdviga”, Zap. nauchn. semin. LOMI, 217, 1994, 16–25

[17] A. B. Aleksandrov, “On embedding theorems for coinvariant subspaces of the shift operator, I”, Complex analysis, operators, and related topics, Operator Theory: Advances and Applications, 113, Basel, 2000, 45–64 | MR | Zbl

[18] A. B. Aleksandrov, “O teoremakh vlozheniya dlya koinvariantnykh podprostranstv operatora sdviga, II”, Zap. nauchn. semin. POMI, 262, 1999, 5–48 | MR | Zbl

[19] K. M. Dyakonov, “Embedding theorems for star-invariant subspaces generated by smooth inner functions”, J. Funct. Anal., 157:2 (1998), 588–598 | DOI | MR | Zbl

[20] A. D. Baranov, “Vesovye neravenstva Bernshteina i teoremy vlozheniya dlya modelnykh podprostranstv”, Algebra i Analiz, 15:5 (2003), 138–168 | MR | Zbl

[21] F. Nazarov, A. Volberg, “The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces $K_\theta$”, J. Anal. Math., 87 (2002), 385–414 | DOI | MR | Zbl

[22] W. S. Cohn, “Radial limits and star invariant subspaces of bounded mean oscillation”, Amer. J. Math., 108 (1986), 719–749 | DOI | MR | Zbl

[23] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[24] Yu. I. Lyubarskii, K. Seip, “Complete interpolation sequences for Paley–Wiener spaces and Muckenhoupt's ($A_p$) condition”, Rev. Mat. Iber., 13:2 (1997), 361–376 | MR | Zbl