Behavior of automorphic $l$-functions at the points $s=1$ and $s=1/2$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 149-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_k(N)^+$ be the set of primitive cusp forms of even weight $k$ for $\Gamma_0(N)$ and let $L(s,\operatorname{sym}^2f)$ be the symmetric square $L$-function $L(s,f)$ of a form $f\in S_k(N)^+$. The moments of the variable $L(s,\operatorname{sym}^2f)$, $f\in S_2(N)^+$, are computed for $N=p$, and the corresponding limiting distribution is determined in $N$-aspect. Let $f\in S_k(1)^+$, $g\in S_l(1)^+$, and $\omega_f=\Gamma(k-1)/(4\pi)^{k-1}{\langle f,f\rangle}$. Asymptotic formulas for $\sum_{f\in S_k(1)^+}\omega_f L\Bigl(\frac12,\operatorname{sym}^2 f\Bigr)$ and $\sum_{f\in S_k(1)^+}\omega_f L\Bigl(\frac12,f\otimes g\Bigr)$ as $k\in\infty$ are obtained.
@article{ZNSL_2003_302_a9,
     author = {O. M. Fomenko},
     title = {Behavior of automorphic $l$-functions at the points $s=1$ and $s=1/2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--167},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a9/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Behavior of automorphic $l$-functions at the points $s=1$ and $s=1/2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 149
EP  - 167
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a9/
LA  - ru
ID  - ZNSL_2003_302_a9
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Behavior of automorphic $l$-functions at the points $s=1$ and $s=1/2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 149-167
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a9/
%G ru
%F ZNSL_2003_302_a9
O. M. Fomenko. Behavior of automorphic $l$-functions at the points $s=1$ and $s=1/2$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 149-167. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a9/

[1] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc., 31:1 (1975), 79–98 | DOI | MR | Zbl

[2] J. Hoffstein, P. Lockhart, “Coefficients of Maass forms and the Siegel zero. Appendix by D. Goldfeld, J. Hoffstein, D. Lieman, An effective zero free region”, Ann. of Math., 140 (1994), 161–181 | DOI | MR | Zbl

[3] M. B. Barban, “Bolshoe resheto Yu. V. Linnika i predelnaya teorema dlya chisla klassov idealov mnimogo kvadratichnogo polya”, Izv. AN SSSR, ser. mat., 26:4 (1962), 573–580 | MR | Zbl

[4] M. B. Barban, “Metod “bolshogo resheta” i ego primeneniya v teorii chisel”, Uspekhi mat. nauk, 21:1 (1966), 51–102 | MR | Zbl

[5] M. B. Barban, G. Gordover, “O momentakh chisla klassov chisto korennykh kvadratichnykh form otritsatelnogo opredelitelya”, Dokl. AN SSSR, 167:2 (1966), 267–269 | MR | Zbl

[6] W. Luo, “Values of symmetric square $L$-functions at 1”, J. Reine Angew. Math., 506 (1999), 215–235 | MR | Zbl

[7] G. Montgomeri, Multiplikativnaya teoriya chisel, M., 1974

[8] S. Gelbart, H. Jacquet, “A relation between automorphic representations of $GL(2)$ and $GL(3)$”, Ann. Sci. Ec. Norm. Sup., 4:11 (1978), 471–552 | MR

[9] W. Duke, E. Kowalski, “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations”, Invent. Math., 139 (2000), 1–39 | DOI | MR | Zbl

[10] H. Iwaniec, P. Michel, “The second moment of the symmetric square $L$-functions”, Ann. Acad. Scient. Fenn. Math., 26 (2001), 465–482 | MR | Zbl

[11] D. Zagier, “Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields”, Modular Functions of One Variable, VI, LNM, 627, eds. J.-P. Serre, D. Zagier, Springer, Berlin-Heidelberg-New York, 1976, 105–169 | MR

[12] W. Kohnen and J. Sengupta, “On the average of central values of symmetric square $L$-functions in weight aspect”, Nagoya Math. J., 167 (2002), 95–100 | MR | Zbl

[13] S. Mizumoto, “Certain $L$-functions at $s=1/2$”, Acta Arithm., 88:1 (1999), 51–66 | MR | Zbl

[14] P. Sarnak, “Estimates for Rankin–Selberg $L$-functions and quantum unique ergodicity”, J. Funct. Analysis, 184 (2001), 419–453 | DOI | MR | Zbl

[15] N. V. Kuznetsov, “Novyi klass tozhdestv dlya koeffitsientov Fure modulyarnykh form”, Acta Arithm., 27 (1975), 505–519 | Zbl

[16] N. V. Kuznetsov, Avtomorfnye funktsii Maasa modulyarnoi gruppy i ikh prilozheniya, Dissertatsiya na soiskanie uchenoi stepeni doktora fiz.-mat. nauk, Khabarovsk, 1980

[17] G. Beitmen, A. Erdein, Vysshie transtsendentnye funktsii, T. 1, M., 1973; Т. 2, М., 1974