On the Distribution of Values of $L(1,f)$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 135-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_k(N)^+$ be the set of newforms of weight $k$ for $\Gamma_0(N)$, and let $L(s,f)$, $f\in S_k(N)^+$, be the Hecke $L$-function of the form $f$. It is proved that for every integer $m\ge1$, $k=2$ and $N=p\to\infty$ $$ \sum_{f\in S_2(N)^+}\,L^m(1,f)=\frac{1}{12}B_m N+O(N^{1-\alpha}), $$ where $B_m$ is a constant defined in the paper, and $\alpha=\alpha(m)>0$ is a certain constant. This result implies the existence of the distribution function of the sequence $$ \{L(1,f),\,f\in S_2(N)^+\},\quad N=p\to\infty, $$ and also yields an explicit expression for the corresponding characteristic function.
@article{ZNSL_2003_302_a8,
     author = {O. M. Fomenko},
     title = {On the {Distribution} of {Values} of~$L(1,f)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--148},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a8/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the Distribution of Values of $L(1,f)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 135
EP  - 148
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a8/
LA  - ru
ID  - ZNSL_2003_302_a8
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the Distribution of Values of $L(1,f)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 135-148
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a8/
%G ru
%F ZNSL_2003_302_a8
O. M. Fomenko. On the Distribution of Values of $L(1,f)$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 135-148. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a8/

[1] A. P. Ogg, “On a convolution of $L$-series”, Invent. Math., 7:4 (1969), 297–312 | DOI | MR | Zbl

[2] J. Hoffstein, D. Ramakrishnan, “Siegel zeros and cusp forms”, Internat. Math. Research Notices, 1995, no. 6, 279–308 | DOI | MR | Zbl

[3] E. P. Golubeva, O. M. Fomenko, “Znacheniya ryadov Dirikhle, assotsiirovannykh s modulyarnymi formami, v tochkakh $s=1/2$, $1$”, Zap. nauchn. semin. LOMI, 134, 1984, 117–137 | MR | Zbl

[4] M. B. Barban, “Metod “bolshogo resheta” i ego primeneniya v teorii chisel”, Uspekhi mat. nauk, 21:1 (1966), 51–102 | MR | Zbl

[5] M. Eichler, “Quadratische Formen und Modulfunktionen”, Acta Arithm., 4:3 (1958), 217–239 | MR | Zbl

[6] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc., 20:1–3 (1956), 47–87 | MR | Zbl

[7] A. Brumer, “The rank of $J_0(N)$”, Columbia University Number Theory Seminar (New York, 1992), Astérisque, 228, 1995, 41–68 | MR | Zbl

[8] J. M. Vanderkam, “The rank of quotients of $J_0(N)$”, Duke Math. J., 97:3 (1999), 545–577 | DOI | MR | Zbl

[9] W. Luo, “Values of symmetric square $L$-functions at, 1”, J. Reine und Angew. Math., 506 (1999), 215–235 | MR | Zbl

[10] G. Montgomeri, Multiplikativnaya teoriya chisel, M., 1974

[11] W. Duke, E. Kowalski, “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations”, Invent. Math., 139 (2000), 1–39 | DOI | MR | Zbl