On twisted Kloosterman sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 96-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the Kloosterman sums twisted by characters over a finite field, addition formulas of convolution type are derived. As a corollary, orthogonality relations connecting the Kloosterman and Salié vectors are obtained.
@article{ZNSL_2003_302_a6,
     author = {N. V. Proskurin},
     title = {On twisted {Kloosterman} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--106},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a6/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On twisted Kloosterman sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 96
EP  - 106
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a6/
LA  - ru
ID  - ZNSL_2003_302_a6
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On twisted Kloosterman sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 96-106
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a6/
%G ru
%F ZNSL_2003_302_a6
N. V. Proskurin. On twisted Kloosterman sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 96-106. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a6/

[1] D. H. Lehmer, E. Lehmer, “The cyclotomy of Kloosterman sums”, Acta Arithm., 12:4 (1967), 385–407 | MR | Zbl

[2] H. Salié, “Über die Kloostermanschen Summen $S(u,v;q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR

[3] K. Ireland, M. Rosen, A classical introduction to modern number theory, Second eq., Grad. Texts in Math., 84, Springer-Verlag, 1990 | MR | Zbl

[4] K. S. Williams, “Note on Salié's sum”, Proc. Amer. Math. Soc., 30:2 (1971), 393–394 | DOI | MR | Zbl