Self-similarity of some sequences of points on a circle
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 81-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The self-similarity and periodicity properties are proved for the derivatives $d^mO_0$ of the sequences $O_0$, which are obtained by shifting the unit circle by the arc $\tau_2=1+\sqrt2=[(2)]$.
@article{ZNSL_2003_302_a5,
     author = {N. N. Manuylov},
     title = {Self-similarity of some sequences of points on a~circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--95},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a5/}
}
TY  - JOUR
AU  - N. N. Manuylov
TI  - Self-similarity of some sequences of points on a circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 81
EP  - 95
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a5/
LA  - ru
ID  - ZNSL_2003_302_a5
ER  - 
%0 Journal Article
%A N. N. Manuylov
%T Self-similarity of some sequences of points on a circle
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 81-95
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a5/
%G ru
%F ZNSL_2003_302_a5
N. N. Manuylov. Self-similarity of some sequences of points on a circle. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 81-95. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a5/

[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 2003 (to appear)

[2] Hyeong-Chai Jeong, Eunsang Kim, Chang-Yeong Lee, “Noncommutative torus from Fibonacci chains via foliation”, J. Phys. A, 34:31 (2001), R1–R19 | DOI | MR | Zbl

[3] N. N. Manuilov, Rekurrentnye samopodobnye razbieniya, Chebyshevskii sbornik, 4, no. 2, Tula, 2003 | MR | Zbl

[4] N. N. Manuilov, “Nepreryvnyi vetvyaschiisya $B$-protsess i sobstvennye razbieniya okruzhnosti”, Trudy XXV Konferentsii molodykh uchenykh mekh.-mat. fak. MGU, MGU, M., 2003

[5] N. N. Manuilov, “Osnovnye svoistva serebryanogo secheniya $1+\sqrt{2}$ i nekotorye chislovye posledovatelnosti, emu sootvetstvuyuschie”, Sbornik trudov molodykh uchenykh, no. 3, Vladimir, 2003 | MR