The method of extremal metric in extremal decomposition problems with free parameters
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 52-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $a_1,\dots,a_n$ be a system of distinct points on the $z$-sphere $\overline{\mathbb C}$, and let $\mathcal D$ be a system of all non-overlapping simply-connected domains $D_1,\dots,D_n$ on $\overline{\mathbb C}$ such that $a_k\in D_k$, $k=1,\dots, n$. Let $M(D_k, a_k)$ be the reduced module of the domain Dk with respect to the point $a_k\in D_k$. In the present paper, we solve some problems concerning the maximum of weighted sums of the reduced modules $M(D_k, a_k)$ in certain families of systems of domains $\{D_k\}$ described above, where the systems of points $\{a_k\}$ satisfy prescribed symmetry conditions. In each case, the proof is based on an explicit construction of an admissible metric of the module problem, which is equivalent to the extremal problem under consideration, from known extremal metrics of simpler module problems.
@article{ZNSL_2003_302_a3,
     author = {G. V. Kuz'mina},
     title = {The method of extremal metric in extremal decomposition problems with free parameters},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--67},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a3/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - The method of extremal metric in extremal decomposition problems with free parameters
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 52
EP  - 67
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a3/
LA  - ru
ID  - ZNSL_2003_302_a3
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T The method of extremal metric in extremal decomposition problems with free parameters
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 52-67
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a3/
%G ru
%F ZNSL_2003_302_a3
G. V. Kuz'mina. The method of extremal metric in extremal decomposition problems with free parameters. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 52-67. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a3/

[1] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii, I, II”, Algebra i analiz, 9:3 (1997), 41–103 | MR

[2] V. N. Dubinin, “Razdelyayuschee preobrazovanie oblastei i zadachi ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 168, 1988, 48–66 | MR | Zbl

[3] V. N. Dubinin, “Simmetrizatsiya v teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[4] E. G. Emelyanov, “O svyazi dvukh zadach ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 160, 1987, 91–98 | MR

[5] G. V. Kuzmina, “O svyazi razlichnykh zadach ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 254, 1998, 116–131 | MR

[6] G. V. Kuzmina, “Zadachi ob ekstremalnom razbienii rimanovoi sfery, I, II”, Zap. nauchn. semin. POMI, 276, 2001, 253–275 ; 286, 2002, 126–147 | MR

[7] L. I. Kolbina, “Nekotorye ekstremalnye zadachi v konformnom otobrazhenii”, Dokl. AN SSSR, 84 (1952), 865–868 | MR