The number of words of a given length in the planar crystallographic groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 188-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper reveals an interrelation between the words in groups and the growth process of the corresponding graphs, based on which exact formulas for the number of words of a given length for all 17 planar crystallographic groups are obtained. Sloane's conjecture on the graphs of these groups is proved.
@article{ZNSL_2003_302_a12,
     author = {A. V. Shutov},
     title = {The number of words of a~given length in the planar crystallographic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--197},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - The number of words of a given length in the planar crystallographic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 188
EP  - 197
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/
LA  - ru
ID  - ZNSL_2003_302_a12
ER  - 
%0 Journal Article
%A A. V. Shutov
%T The number of words of a given length in the planar crystallographic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 188-197
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/
%G ru
%F ZNSL_2003_302_a12
A. V. Shutov. The number of words of a given length in the planar crystallographic groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 188-197. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/

[1] V. G. Zhuravlev, “Samopodobnyi rost periodicheskikh razbienii i grafov”, Algebra i analiz, 13:2 (2001), 69–92 | MR | Zbl

[2] R. W. Grosse-Kunstleve, G. O. Brunner, N. J. Sloane, “Algebraic description of coordination sequences and exact topological densities for zeolites”, Acta Crist., 2 (1996), 1–2

[3] G. S. M. Kokseter, U. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, M., 1980

[4] A. I. Kostrikin, Vvedenie v algebru. Chast III. Osnovnye struktury algebry, M., 2001

[5] M. Baake, U. Grimm, “Coordination sequences for root lattices and related graphs”, Zeitschr. Kristallogr., 212 (1997), 253–256 | DOI | MR | Zbl

[6] J. H. Conway, N. Sloane, “Low-dimensional lattices, VII: coordination sequences”, Proc. Royal Soc. London, A, 526 (1997), 10–25 | MR

[7] D. Cox, Recent developments in toric geometry, arXiv: /alg-geom/9606016v1 | MR