@article{ZNSL_2003_302_a12,
author = {A. V. Shutov},
title = {The number of words of a~given length in the planar crystallographic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {188--197},
year = {2003},
volume = {302},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/}
}
A. V. Shutov. The number of words of a given length in the planar crystallographic groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 188-197. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/
[1] V. G. Zhuravlev, “Samopodobnyi rost periodicheskikh razbienii i grafov”, Algebra i analiz, 13:2 (2001), 69–92 | MR | Zbl
[2] R. W. Grosse-Kunstleve, G. O. Brunner, N. J. Sloane, “Algebraic description of coordination sequences and exact topological densities for zeolites”, Acta Crist., 2 (1996), 1–2
[3] G. S. M. Kokseter, U. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, M., 1980
[4] A. I. Kostrikin, Vvedenie v algebru. Chast III. Osnovnye struktury algebry, M., 2001
[5] M. Baake, U. Grimm, “Coordination sequences for root lattices and related graphs”, Zeitschr. Kristallogr., 212 (1997), 253–256 | DOI | MR | Zbl
[6] J. H. Conway, N. Sloane, “Low-dimensional lattices, VII: coordination sequences”, Proc. Royal Soc. London, A, 526 (1997), 10–25 | MR
[7] D. Cox, Recent developments in toric geometry, arXiv: /alg-geom/9606016v1 | MR