The number of words of a~given length in the planar crystallographic groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 188-197

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper reveals an interrelation between the words in groups and the growth process of the corresponding graphs, based on which exact formulas for the number of words of a given length for all 17 planar crystallographic groups are obtained. Sloane's conjecture on the graphs of these groups is proved.
@article{ZNSL_2003_302_a12,
     author = {A. V. Shutov},
     title = {The number of words of a~given length in the planar crystallographic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {302},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - The number of words of a~given length in the planar crystallographic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 188
EP  - 197
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/
LA  - ru
ID  - ZNSL_2003_302_a12
ER  - 
%0 Journal Article
%A A. V. Shutov
%T The number of words of a~given length in the planar crystallographic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 188-197
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/
%G ru
%F ZNSL_2003_302_a12
A. V. Shutov. The number of words of a~given length in the planar crystallographic groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 188-197. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a12/