Polynomial approximations on closed subsets of elliptic curves
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 178-187
Cet article a éte moissonné depuis la source Math-Net.Ru
Approximation of Hölder functions on subsets of elliptic curves using polynomials is considered. An equivalent problem of approximation on the complex plane with the use of doubly periodic functions is introduced. A direct approximation theorem is proved.
@article{ZNSL_2003_302_a11,
author = {A. V. Khaustov and N. A. Shirokov},
title = {Polynomial approximations on closed subsets of elliptic curves},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--187},
year = {2003},
volume = {302},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a11/}
}
A. V. Khaustov; N. A. Shirokov. Polynomial approximations on closed subsets of elliptic curves. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 178-187. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a11/
[1] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, M., 1970
[2] N. A. Shirokov, “Priblizhenie tselymi funktsiyami na beskonechnoi sisteme otrezkov”, Tr. S.-Peterburgskogo Mat. ob-va, 123, 2001, 181–188
[3] N. A. Lebedev, N. A. Shirokov, “O ravnomernom priblizhenii funktsii na zamknutykh mnozhestvakh, imeyuschikh konechnoe chislo uglovykh tochek s nenulevymi vneshnimi uglami”, Izv. AN Arm. SSSR, 8:4 (1971), 311–341
[4] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, M., 1977