Distribution of lattice points on hyperboloids
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 168-177

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the region $\Omega_0$ on the hyperboloid $1=b^2+ac$ defined by the conditions $$ 0\le a\le L_21,\quad 0\le\frac ba\le t_21. $$ Let $r(n,\Omega_0)_pr$ be the number of integral points $(a,b,c)$ with $a=p$ (a prime) on the hyperboloid $n=b^2+ac$ ($n>0$ is an integer) such that $(a,b,c)/\sqrt n\in\Omega_0$. It is proved that for prime $P>P(\varepsilon)$, $\varepsilon>0$, $$ (K-\Delta-\varepsilon)\frac P{\log P}\le r(P^2,\Omega_0)_{pr}\le(K+\Delta+\varepsilon) \frac P{\log P}, $$ where $$ K=2(t_2-t_1)(L_2-L_1),\quad\Delta=L^2_2\cdot\frac{2\pi}3. $$
@article{ZNSL_2003_302_a10,
     author = {O. M. Fomenko},
     title = {Distribution of lattice points on hyperboloids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {302},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Distribution of lattice points on hyperboloids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 168
EP  - 177
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/
LA  - ru
ID  - ZNSL_2003_302_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Distribution of lattice points on hyperboloids
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 168-177
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/
%G ru
%F ZNSL_2003_302_a10
O. M. Fomenko. Distribution of lattice points on hyperboloids. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 168-177. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/