Distribution of lattice points on hyperboloids
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 168-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider the region $\Omega_0$ on the hyperboloid $1=b^2+ac$ defined by the conditions $$ 0<L_1\le a\le L_2<1,\quad 0<t_1\le\frac ba\le t_2<1. $$ Let $r(n,\Omega_0)_pr$ be the number of integral points $(a,b,c)$ with $a=p$ (a prime) on the hyperboloid $n=b^2+ac$ ($n>0$ is an integer) such that $(a,b,c)/\sqrt n\in\Omega_0$. It is proved that for prime $P>P(\varepsilon)$, $\varepsilon>0$, $$ (K-\Delta-\varepsilon)\frac P{\log P}\le r(P^2,\Omega_0)_{pr}\le(K+\Delta+\varepsilon) \frac P{\log P}, $$ where $$ K=2(t_2-t_1)(L_2-L_1),\quad\Delta=L^2_2\cdot\frac{2\pi}3. $$
@article{ZNSL_2003_302_a10,
     author = {O. M. Fomenko},
     title = {Distribution of lattice points on hyperboloids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--177},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Distribution of lattice points on hyperboloids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 168
EP  - 177
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/
LA  - ru
ID  - ZNSL_2003_302_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Distribution of lattice points on hyperboloids
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 168-177
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/
%G ru
%F ZNSL_2003_302_a10
O. M. Fomenko. Distribution of lattice points on hyperboloids. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 168-177. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a10/

[1] Yu. V. Linnik, Ergodicheskie svoistva algebraicheskikh polei, L., 1967

[2] E. P. Golubeva, “Asimptoticheskoe raspredelenie tselykh tochek, prinadlezhaschikh zadannym klassam vychetov, na giperboloidakh spetsialnogo vida”, Mat. sb., 123:4 (1984), 510–533 | MR | Zbl

[3] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90 | DOI | MR | Zbl

[4] A. I. Vinogradov, L. A. Takhtadzhyan, “Ob asimptotikakh Linnika–Skubenko”, Dokl. AN SSSR, 253:4 (1980), 777–780 | MR | Zbl

[5] E. P. Golubeva, “Svyaz summy summ Sale s raspredeleniem tselykh tochek na giperboloidakh”, Zap. nauchn. semin. LOMI, 116, 1982, 56–62 | MR | Zbl

[6] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, M., 1980 | MR

[7] J. B. Rosser, “Explicit bounds for some functions of prime numbers”, Amer. J. Math., 63 (1941), 211–232 | DOI | MR

[8] L. J. Mordell, “On the Kusmin–Landau inequality for exponential sums”, Acta Arithm., 4:1 (1958), 3–9 | MR | Zbl

[9] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401 | DOI | MR | Zbl

[10] W. Duke, J. Friedlander, H. Iwaniec, “Bilinear forms with Kloosterman fractions”, Invent. Math., 128:1 (1997), 23–43 | DOI | MR | Zbl