Conformal mappings and inequalities for algebraic polynomials. II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 18-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper supplements the previous paper of the author under the same title. An analog of the Schwarz boundary lemma is proved for non-univalent regular mappings of subsets of the unit disk onto a disk. Based on this result, certain strengthened inequalities of Bernstein type for algebraic polynomials are obtained. The generalized Mendeleev problem is discussed. Two-sided bounds for the module of the derivative of a polynomial with critical points on an interval are established. Bounds for the coefficients of polynomials under certain constraints are provided.
@article{ZNSL_2003_302_a1,
     author = {V. N. Dubinin},
     title = {Conformal mappings and inequalities for algebraic {polynomials.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--37},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Conformal mappings and inequalities for algebraic polynomials. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 18
EP  - 37
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a1/
LA  - ru
ID  - ZNSL_2003_302_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Conformal mappings and inequalities for algebraic polynomials. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 18-37
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a1/
%G ru
%F ZNSL_2003_302_a1
V. N. Dubinin. Conformal mappings and inequalities for algebraic polynomials. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 18-37. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a1/

[1] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[2] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl

[3] V. N. Dubinin, “K neravenstvu Shvartsa na granitse dlya regulyarnykh v kruge funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 74–84 | MR | Zbl

[4] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Zap. nauchn. semin. POMI, 204, 1993, 115–142 | MR | Zbl

[5] V. N. Dubinin, “Teoremy iskazheniya dlya polinomov na okruzhnosti”, Mat. sb., 191:12 (2000), 51–60 | MR | Zbl

[6] V. N. Dubinin, A. V. Olesov, “O primenenii konformnykh otobrazhenii k neravenstvam dlya polinomov”, Zap. nauchn. semin. POMI, 286, 2002, 85–102 | MR | Zbl

[7] S. N. Bernshtein, Sobranie sochinenii, T. I. Konstruktivnaya teoriya funktsii (1905–1930), M., 1952

[8] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, M.-L., 1964 | MR

[9] V. I. Smirnov, “Sur que'ques polynomes aux proprietes extremales”, Zap. Khark. Mat. ob-va, 4, 1928, 67–72

[10] M. A. Malik, M. C. Vong, “Inequalities concerning the derivative of polynomials”, Rend. Circ. Mat. Palermo (2), 34 (1985), 422–426 | DOI | MR | Zbl

[11] V. K. Jain, “Generalization of certain well known inequalities for polynomials”, Glas. Mat. Ser. III, 32(52) (1997), 45–51 | MR | Zbl

[12] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. LGU, ser. mat., fiz. i khimii, 11:4 (1955), 3–21 | Zbl

[13] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, M., 1975 | MR

[14] D. V. Prokhorov, Reachable set methods in extremal problems for univalent functions, Saratov Univ., Saratov, 1993 | MR | Zbl

[15] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lect. Notes in Math., 1788, 2002 | MR

[16] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR