The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper determines the region of values of the system occurring in the title on the class $T$ of functions $f(z)=z+\dotsb$ regular in the unit disk and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
@article{ZNSL_2003_302_a0,
     author = {E. G. Goluzina},
     title = {The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     year = {2003},
     volume = {302},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a0/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 5
EP  - 17
VL  - 302
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a0/
LA  - ru
ID  - ZNSL_2003_302_a0
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 5-17
%V 302
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a0/
%G ru
%F ZNSL_2003_302_a0
E. G. Goluzina. The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 19, Tome 302 (2003), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2003_302_a0/

[1] W. Rogosinski, “Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen”, Math. Z, 35:1 (1932), 93–121 | DOI | MR

[2] E. G. Goluzina, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh., i astr., 7:2 (1965), 45–63 | MR

[3] E. G. Goluzina, “O mnozhestve znachenii odnoi sistemy funktsionalov v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 226, 1996, 69–79

[4] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1),f'(z_1)\}$ i $\{f(z_1)$, $f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR

[5] V. A. Adreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU, ser. mat., mekh., i astr., 7:2 (1961), 8–22

[6] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973

[7] F. R. Gantmakher, Teoriya matrits, 3-e izd., M., 1967