@article{ZNSL_2003_301_a8,
author = {P. Py},
title = {On representation theory of symmetric groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {229--242},
year = {2003},
volume = {301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a8/}
}
P. Py. On representation theory of symmetric groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 229-242. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a8/
[1] P. Diaconis, “Application of noncommutative Fourier analysis to probability problems”, Ecole d'été de probabilités de Saint-Flour, XV–XVII (1985–1987), Lecture Notes in Math., 1362, ed. P. L. Hennequin, Springer-Verlag, 1988, 51–100 | MR
[2] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., New Ser., 2 (1996), 581–605 | DOI | MR | Zbl
[3] J. Friedman, “On Cayley graphs on the symmetric group generated by transpositions”, Combinatorica, 20 (2000), 505–519 | DOI | MR | Zbl
[4] J. Friedman, P. Hanlon, “On the Betti numbers of chessboard complexes”, J. Algebraic Combin., 8 (1996), 193–203 | DOI | MR
[5] A. M. Odlyzko, L. Flatto, D. B. Wales, “Random shuffles and group representation”, Ann. Probab., 13 (1985), 587–598 | DOI | MR
[6] G. I. Olshanski, “Extension of the algebra $U(g)$ for infinite-dimensional classical Lie algebras $g$ and the Yangians $Y(gl(m))$”, Soviet. Math. Dokl., 36 (1988), 569–573 | MR
[7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edition, Springer, 2000 | MR
[8] F. Scarabotti, “Radon transforms on the symmetric group and harmonic analysis of a class of invariant Laplacians”, Forum Math., 10 (1998), 407–411 | DOI | MR | Zbl
[9] J.-P. Serre, Représentations Linéaires des Groupes Finis, Hermann, 1967 | MR | Zbl