The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 219-228
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain the limit shape of Young diagrams for a class of multiplicative statistics. In particular, we find the limit shape corresponding to J. Green's function enumerating the characters of $\operatorname{GL}(n, F_q)$.
@article{ZNSL_2003_301_a7,
author = {F. V. Petrov},
title = {The limit shape of {Young} diagrams for multiplicative statistics with superpolynomial growth},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {219--228},
publisher = {mathdoc},
volume = {301},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/}
}
TY - JOUR AU - F. V. Petrov TI - The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 219 EP - 228 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/ LA - ru ID - ZNSL_2003_301_a7 ER -
F. V. Petrov. The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 219-228. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/