The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 219-228

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the limit shape of Young diagrams for a class of multiplicative statistics. In particular, we find the limit shape corresponding to J. Green's function enumerating the characters of $\operatorname{GL}(n, F_q)$.
@article{ZNSL_2003_301_a7,
     author = {F. V. Petrov},
     title = {The limit shape of {Young} diagrams for multiplicative statistics with superpolynomial growth},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {301},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/}
}
TY  - JOUR
AU  - F. V. Petrov
TI  - The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 219
EP  - 228
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/
LA  - ru
ID  - ZNSL_2003_301_a7
ER  - 
%0 Journal Article
%A F. V. Petrov
%T The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 219-228
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/
%G ru
%F ZNSL_2003_301_a7
F. V. Petrov. The limit shape of Young diagrams for multiplicative statistics with superpolynomial growth. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 219-228. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a7/