The Poisson–Furstenberg boundary of а locally free group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 195-211
Cet article a éte moissonné depuis la source Math-Net.Ru
Following the research plan outlined by A. M. Vershik in [1], we describe the Poisson–Furstenberg boundary of locally free groups in terms of infinite stable normal forms.
@article{ZNSL_2003_301_a5,
author = {A. V. Malyutin},
title = {The {Poisson{\textendash}Furstenberg} boundary of {\cyra}~locally free group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--211},
year = {2003},
volume = {301},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a5/}
}
A. V. Malyutin. The Poisson–Furstenberg boundary of а locally free group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 195-211. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a5/
[1] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 55:4 (2000), 59–128 | MR | Zbl
[2] A. Vershik, S. Nechaev, R. Bikbov, “Statistical properties of locally free groups with applications to braid groups and growth of random heaps”, Comm. Math. Phys., 212:2 (2000), 469–501 | DOI | MR | Zbl
[3] V. A. Kaimanovich, “The Poisson formula for groups with hyperbolic properties”, Ann. Math., 152 (2000), 659–692 | DOI | MR | Zbl
[4] E. B. Dynkin, M. B. Malyutov, “Sluchainoe bluzhdanie na gruppakh s konechnym chislom obrazuyuschikh”, DAN SSSR, 173 (1961), 1042–1045 | MR
[5] P. Cartier, D. Foata, “Problèmes combinatoires de commutation et réarrangements”, Lecture Notes in Math., 85, 1969 | MR