@article{ZNSL_2003_301_a4,
author = {L. Yu. Kolotilina},
title = {Bounds for the extreme eigenvalues of block~$2\times2$ {Hermitian} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--194},
year = {2003},
volume = {301},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/}
}
L. Yu. Kolotilina. Bounds for the extreme eigenvalues of block $2\times2$ Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 172-194. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/
[1] L. Yu. Kolotilina, “Optimalno obuslovlennye blochnye $2\times2$ matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 72–85 | MR | Zbl
[2] L. Yu. Kolotilina, “Ob odnom klasse optimalno obuslovlennykh blochnykh $2\times2$ matrits”, Zap. nauchn. semin. POMI, 284, 2002, 64–76 | MR | Zbl
[3] L. Yu. Kolotilina, “O krainikh sobstvennykh znacheniyakh blochnykh $2\times2$ ermitovykh matrits”, Zap. nauchn. semin. POMI, 296, 2003, 27–38 | MR | Zbl
[4] J. Demmel, “The condition number of equivalence transformations that block diagonalize matrix pencils”, Matrix Pencils, Lecture Notes in Math., 973, eds. B. Kagström, A. Ruhe, Springer, 1982, 2–16 | MR
[5] S. C. Eisenstat, J. W. Lewis, M. H. Schultz, “Optimal block diagonal scaling of block $2$-cyclic matrices”, Linear Algebra Appl., 44 (1982), 181–186 | DOI | MR | Zbl
[6] M. Markus, Kh. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR