Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 172-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let an $n\times n$ Hermitian matrix $A$ be presented in block $2\times2$ form as $A=\left[\begin{smallmatrix}A_{11}{12}\\A^*_{12}{22}\end{smallmatrix}\right]$, where $A_{12}\ne0$, and assume that the diagonal blocks $A_{11}$ and $A_{22}$ are positive definite. Under these assumptions, it is proved that the extreme eigenvalues of $A$ satisfy the bounds $$ \lambda_1(A)\ge\|A_{12}\|(\|R\|^{-1}+1),\quad |\lambda_n(A)|\le\|A_{12}\|\,\bigl|\,\|R\|^{-1}-1\bigr|, $$ where $R=A^{-1/2}_{11}A_{12}A^{-1/2}_{22}$ and $\|\cdot\|$ is the spectral norm. Further, in the positive-definite case, several equivalent conditions necessary and sufficient for both of the above bounds to be attained are provided.
@article{ZNSL_2003_301_a4,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the extreme eigenvalues of block~$2\times2$ {Hermitian} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--194},
     publisher = {mathdoc},
     volume = {301},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 172
EP  - 194
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/
LA  - ru
ID  - ZNSL_2003_301_a4
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 172-194
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/
%G ru
%F ZNSL_2003_301_a4
L. Yu. Kolotilina. Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 172-194. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/