Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 172-194
Voir la notice de l'article provenant de la source Math-Net.Ru
Let an $n\times n$ Hermitian matrix $A$ be presented in block $2\times2$ form as
$A=\left[\begin{smallmatrix}A_{11}{12}\\A^*_{12}{22}\end{smallmatrix}\right]$,
where $A_{12}\ne0$, and assume that the diagonal blocks $A_{11}$ and $A_{22}$ are positive definite. Under these assumptions, it is proved that the extreme eigenvalues of $A$ satisfy the bounds
$$
\lambda_1(A)\ge\|A_{12}\|(\|R\|^{-1}+1),\quad
|\lambda_n(A)|\le\|A_{12}\|\,\bigl|\,\|R\|^{-1}-1\bigr|,
$$
where $R=A^{-1/2}_{11}A_{12}A^{-1/2}_{22}$ and $\|\cdot\|$ is the spectral norm. Further, in the positive-definite case, several equivalent conditions necessary and sufficient for both of the above bounds to be attained are provided.
@article{ZNSL_2003_301_a4,
author = {L. Yu. Kolotilina},
title = {Bounds for the extreme eigenvalues of block~$2\times2$ {Hermitian} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--194},
publisher = {mathdoc},
volume = {301},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/}
}
L. Yu. Kolotilina. Bounds for the extreme eigenvalues of block~$2\times2$ Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 172-194. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a4/