Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 5-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This is a Russian translation of the famous paper by I. Schur in which the method of Schur rings is introduced. The method is used to prove that every primitive permutation group containing a regular cyclic subgroup of composite order is 2-transitive.
@article{ZNSL_2003_301_a0,
     author = {I. Schur},
     title = {Zur {Theorie} der einfach transitiven {Permutationsgruppen} {[A~contribution} to theory of transitive permutation groups]},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--34},
     year = {2003},
     volume = {301},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/}
}
TY  - JOUR
AU  - I. Schur
TI  - Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 5
EP  - 34
VL  - 301
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/
LA  - ru
ID  - ZNSL_2003_301_a0
ER  - 
%0 Journal Article
%A I. Schur
%T Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 5-34
%V 301
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/
%G ru
%F ZNSL_2003_301_a0
I. Schur. Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/

[1] W. Burnside, “On the properties of groups of odd order”, Proc. London Math. Soc., 33 (1900)

[2] W. Burnside, Theory of Groups of Finite Order, 2d ed., Dover Publications, Inc., New York, 1955 | MR | Zbl

[3] I. Schur, “Neuer Beweis eines Satzes von W. Burnside”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 17 (1908) | Zbl