Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 5-34
Cet article a éte moissonné depuis la source Math-Net.Ru
This is a Russian translation of the famous paper by I. Schur in which the method of Schur rings is introduced. The method is used to prove that every primitive permutation group containing a regular cyclic subgroup of composite order is 2-transitive.
@article{ZNSL_2003_301_a0,
author = {I. Schur},
title = {Zur {Theorie} der einfach transitiven {Permutationsgruppen} {[A~contribution} to theory of transitive permutation groups]},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--34},
year = {2003},
volume = {301},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/}
}
TY - JOUR AU - I. Schur TI - Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups] JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 5 EP - 34 VL - 301 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/ LA - ru ID - ZNSL_2003_301_a0 ER -
I. Schur. Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a0/
[1] W. Burnside, “On the properties of groups of odd order”, Proc. London Math. Soc., 33 (1900)
[2] W. Burnside, Theory of Groups of Finite Order, 2d ed., Dover Publications, Inc., New York, 1955 | MR | Zbl
[3] I. Schur, “Neuer Beweis eines Satzes von W. Burnside”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 17 (1908) | Zbl