Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 87-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of transverse homoclinic orbits in a singular or weakly hyperbolic Hamiltonian, with $3$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The example considered consists of an integrable Hamiltonian possessing a $2$-dimensional hyperbolic invariant torus with fast frequencies $\omega/\sqrt\varepsilon$ and coincident whiskers or separatrices, plus a perturbation of order $\mu=\varepsilon^p$, giving rise to an exponentially small splitting of separatrices. We show that asymptotic estimates for the transversality of the intersections can be obtained if $\omega$ satisfies certain arithmetic properties. More precisely, we assume that $\omega$ is a quadratic vector (i.e. the frequency ratio is a quadratic irrational number), and generalize the good arithmetic properties of the golden vector. We provide a sufficient condition on the quadratic vector $\omega$ ensuring that the Poincaré–Melnikov method (used for the golden vector in a previous work) can be applied to establish the existence of transverse homoclinic orbits and, in a more restrictive case, their continuation for all values of $\varepsilon\to0$.
@article{ZNSL_2003_300_a9,
     author = {A. Delshams and P. Guti\'errez},
     title = {Exponentially small splitting of separatrices for whiskered tori in {Hamiltonian} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--121},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/}
}
TY  - JOUR
AU  - A. Delshams
AU  - P. Gutiérrez
TI  - Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 87
EP  - 121
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/
LA  - en
ID  - ZNSL_2003_300_a9
ER  - 
%0 Journal Article
%A A. Delshams
%A P. Gutiérrez
%T Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 87-121
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/
%G en
%F ZNSL_2003_300_a9
A. Delshams; P. Gutiérrez. Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 87-121. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/