Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 87-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the existence of transverse homoclinic orbits in a singular or weakly hyperbolic Hamiltonian, with $3$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The example considered consists of an integrable Hamiltonian possessing a $2$-dimensional hyperbolic invariant torus with fast frequencies $\omega/\sqrt\varepsilon$ and coincident whiskers or separatrices, plus a perturbation of order $\mu=\varepsilon^p$, giving rise to an exponentially small splitting of separatrices. We show that asymptotic estimates for the transversality of the intersections can be obtained if $\omega$ satisfies certain arithmetic properties. More precisely, we assume that $\omega$ is a quadratic vector (i.e. the frequency ratio is a quadratic irrational number), and generalize the good arithmetic properties of the golden vector. We provide a sufficient condition on the quadratic vector $\omega$ ensuring that the Poincaré–Melnikov method (used for the golden vector in a previous work) can be applied to establish the existence of transverse homoclinic orbits and, in a more restrictive case, their continuation for all values of $\varepsilon\to0$.
@article{ZNSL_2003_300_a9,
     author = {A. Delshams and P. Guti\'errez},
     title = {Exponentially small splitting of separatrices for whiskered tori in {Hamiltonian} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--121},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/}
}
TY  - JOUR
AU  - A. Delshams
AU  - P. Gutiérrez
TI  - Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 87
EP  - 121
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/
LA  - en
ID  - ZNSL_2003_300_a9
ER  - 
%0 Journal Article
%A A. Delshams
%A P. Gutiérrez
%T Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 87-121
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/
%G en
%F ZNSL_2003_300_a9
A. Delshams; P. Gutiérrez. Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 87-121. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a9/

[1] G. Benettin, A. Carati, G. Gallavotti, “A rigorous implementation of the Jeans–Landau–Teller approximation for adiabatic invariants”, Nonlinearity, 10 (1997), 479–505 | DOI | MR | Zbl

[2] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52:5 (1979), 263–379 | DOI | MR

[3] A. Delshams, P. Gutiérrez, “Splitting potential and the Poincaré–Melnikov method for whiskered tori in Hamiltonian systems”, J. Nonlinear Sci., 10:4 (2000), 433–476 | DOI | MR | Zbl

[4] A. Delshams, P. Gutiérrez, “Splitting and Melnikov potentials in Hamiltonian systems”, Hamiltonian Systems and Celestial Mechanics (HAMSYS-98), Proceedings of the III International Symposium (Pátzcuaro, Michoacán, México, 7–11 December, 1998), World Scientific Monograph Series in Mathematics, 6, eds. J. Delgado, E. A. Lacomba, E. Pérez-Chavela, J. Llibre, World Scientific, Singapore, 2000, 111–137 | MR | Zbl

[5] A. Delshams, P. Gutiérrez, “Homoclinic orbits to invariant tori in Hamiltonian systems”, Multiple-Time-Scale Dynamical Systems (Minneapolis, 27–31 October, 1997), IMA Vol. Math. Appl., 122, eds. C. K. R. T. Jones, A. I. Khibnik, Springer-Verlag, New York, 2001, 1–27 | MR | Zbl

[6] A. Delshams, P. Gutiérrez, Exponentially small splitting for whiskered tori in Hamiltonian systems: Continuation of transverse homoclinic orbits, Preprint No 03-112, 2002 | MR | Zbl

[7] A. Delshams, V. G. Gelfreich, À. Jorba, T. M. Seara, “Exponentially small splitting of separatrices under fast quasiperiodic forcing”, Comm. Math. Phys., 189 (1997), 35–71 | DOI | MR | Zbl

[8] A. Delshams, P. Gutiérrez, T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian systems: Flow-box coordinates and upper bounds, Preprint No 03-134, 2002 | MR | Zbl

[9] L. H. Eliasson, “Biasymptotic solutions of perturbed integrable Hamiltonian systems”, Bol. Soc. Brasil. Mat. (N.S.), 25:1 (1994), 57–76 | DOI | MR | Zbl

[10] V. G. Gelfreich, “A proof of the exponentially small transversality of the separatrices for the standard map”, Comm. Math. Phys., 201:1 (1999), 155–216 | DOI | MR | Zbl

[11] V. G. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Russian Math. Surveys, 56:3 (2001), 499–558 | DOI | MR

[12] H. Koch, “A renormalization group for Hamiltonians, with applications to KAM theory”, Ergodic Theory Dynam. System, 19:2 (1999), 475–521 | DOI | MR | Zbl

[13] V. F. Lazutkin, Splitting of separatrices for the Chirikov's standard map, Preprint VINITI No 6372-84, 1984 | MR

[14] P. Lochak, J.-P. Marco, D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Preprint, 1999 | MR

[15] P. Lochak, “Effective speed of Arnold's diffusion and small denominators”, Phys. Lett. A, 143:1–2 (1990), 39–42 | DOI | MR

[16] P. Lochak, “Canonical perturbation theory via simultaneous approximation”, Russian Math. Surveys, 47:6 (1992), 57–133 | DOI | MR | Zbl

[17] J. Lopes Dias, “Renormalization scheme for vector fields on ${T}^2$ with a Diophantine frequency”, Nonlinearity, 15:3 (2002), 665–679 | DOI | MR | Zbl

[18] A. Pronin, D. Treschev, “Continuous averaging in multi-frequency slow–fast systems”, Regul. Chaotic Dyn., 5:2 (2000), 157–170 | DOI | MR | Zbl

[19] M. Rudnev, S. Wiggins, “On a homoclinic splitting problem”, Regul. Chaotic Dyn., 5:2 (2000), 227–242 | DOI | MR | Zbl

[20] D. Sauzin, “A new method for measuring the splitting of invariant manifolds”, Ann. Sci. École Norm. Sup. (4), 34:2 (2001), 159–221 | MR | Zbl

[21] C. Simó, “Averaging under fast quasiperiodic forcing”, Hamiltonian Mechanics: Integrability and Chaotic Behavior (Toruń, Poland, 28 June–2 July 1993), NATO ASI Ser. B: Phys., 331, ed. J. Seimenis, Plenum, New York, 1994, 13–34 | MR

[22] C. Simó, C. Valls, “A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters”, Nonlinearity, 14:6 (2001), 1707–1760 | DOI | MR | Zbl