A stable foliation to infinity in the phase space of the Hénon map
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 72-79
Cet article a éte moissonné depuis la source Math-Net.Ru
The phase space of quadratic area-preserving Hénon map of the plane is considered. The stable and unstable foliations to infinity are constructed and their differentiability in the real case is proved. Main conjectures on the foliation behavior are discussed for the complex case. The presentation of a dynamical system in the form of a continued fraction is used.
@article{ZNSL_2003_300_a7,
author = {V. L. Chernov},
title = {A~stable foliation to infinity in the phase space of the {H\'enon} map},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--79},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a7/}
}
V. L. Chernov. A stable foliation to infinity in the phase space of the Hénon map. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 72-79. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a7/
[1] V. F. Lazutkin, M. A. Pankratov, A stable foliation to infinity in the complexified phase space of the standard map, Mathematics Preprint Series No 183, Universitat de Barcelona, 1995
[2] A. Ya. Khintchin, Continued Fractions, Nauka, Moscow, 1978 | MR