Generalized coherent states: a~novel approach
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 65-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We define generalized coherent states for oscillator-like systems connected with orthogonal polynomials (classical, $q$-deformed etc.). In considered cases such polynomials play the same role, as the Hermite polynomials are defined in the case of usual boson oscillator.
			
            
            
            
          
        
      @article{ZNSL_2003_300_a6,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Generalized coherent states: a~novel approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/}
}
                      
                      
                    V. V. Borzov; E. V. Damaskinsky. Generalized coherent states: a~novel approach. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 65-71. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/
