Generalized coherent states: a~novel approach
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 65-71

Voir la notice de l'article provenant de la source Math-Net.Ru

We define generalized coherent states for oscillator-like systems connected with orthogonal polynomials (classical, $q$-deformed etc.). In considered cases such polynomials play the same role, as the Hermite polynomials are defined in the case of usual boson oscillator.
@article{ZNSL_2003_300_a6,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Generalized coherent states: a~novel approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Generalized coherent states: a~novel approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 65
EP  - 71
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/
LA  - en
ID  - ZNSL_2003_300_a6
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Generalized coherent states: a~novel approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 65-71
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/
%G en
%F ZNSL_2003_300_a6
V. V. Borzov; E. V. Damaskinsky. Generalized coherent states: a~novel approach. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 65-71. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a6/