@article{ZNSL_2003_300_a4,
author = {V. F. Lazutkin},
title = {Splitting of separatrices for the {Chirikov} standard map},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--55},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a4/}
}
V. F. Lazutkin. Splitting of separatrices for the Chirikov standard map. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 25-55. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a4/
[1] A. N. Kolmogorov, “On conservation of conditionally periodic motions for a small change in Hamilton's function”, Dokl. Akad. Nauk SSSR, 98 (1954), 527–530 | MR | Zbl
[2] V. I. Arnol'd, “Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian”, Uspekhi Mat. Nauk, 18:5(113) (1963), 13–40 | MR
[3] J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962, 1–20 | MR | Zbl
[4] V. F. Lazutkin, “On Moser's invariant curves theorem”, Problems of Dynamical Theory of Seismic Waves, Leningrad, 1974, 109–120 | MR
[5] N. V. Svanidze, “Small perturbations of an integrable dynamical system with an integral invariant”, Boundary value problems of mathematical physics, Trudy Steklov Mat. Inst., 147, 1980, 124–146 | MR | Zbl
[6] J. Pöschel, “Integrability of Hamiltonian systems on Cantor sets”, Comm. Pure Appl. Math., 35:5 (1982), 653–696 | DOI | MR
[7] A. J. Lichtenberg, M. A. Lieberman, Regular and stochastic motion, Applied Mathematical Sciences, 38, Springer-Verlag, New York, 1983 | MR | Zbl
[8] J. M. Mather, “Existence of quasiperiodic orbits for twist homeomorphisms of the annulus”, Topology, 21:4 (1982), 457–467 | DOI | MR | Zbl
[9] A. Katok, “Periodic and quasiperiodic orbits for twist maps”, Dynamical systems and chaos (Sitges/Barcelona, 1982), Lecture Notes Phys., 179, Springer, Berlin, 1983, 47–65 | MR
[10] B. V. Chirikov, Studies on the theory of nonlinear resonances and stochasticity, Institute of Nuclear Physics, Preprint No 267, Novosibirsk, 1969
[11] B. V. Chirikov, Interaction of nonlinear resonances, Novosibirsk State University, Novosibirsk, 1978
[12] A. I. Neishtadt, “On the accuracy of conservation of the adiabatic invariant”, J. Appl. Math. Mech., 45:1 (1981), 80–87 | DOI | MR
[13] H. Poincaré, Selected works, V. 2, Moscow, 1972 | Zbl
[14] S. Aubry, “Many defect structure, stochasticity and incommensurability”, Physique des Défaults, Les Houches. Session XXXV (1980), North-Holland Publ. Company, 1981, 432–451
[15] A. Aubry, “The devil's staircase transformation in incommensurate lattices”, The Riemann problem, complete integrability and arithmetic applications (Bures-sur-Yvette, New York, 1979–1980), Lecture Notes Math., 925, Springer, Berlin–New York, 1982, 221–245 | MR
[16] S. Aubry, P. Y. Le Daeron, “The discrete Frenkel-Kontorova model and its extensions. I: Exact results for the ground-states”, Phys. D, 8:3 (1983), 381–422 | DOI | MR
[1] J. M. Greene, I. C. Percival, “Hamiltonian maps in the complex plane”, Physica D, 3 (1981), 530–548 | DOI | MR | Zbl
[2] V. F. Lazutkin, Splitting of separatrices for the Chirkov standard map, Preprint VINITI 6372-84, 1984 | MR
[3] V. F. Lazutkin, M. B. Tabanov, I. G. Schakhmanskii, Splitting of separatrices for the standard and semistandard mappings, Preprint VINITI 4027-85, 1985 | Zbl
[4] V. F. Lazutkin, “Splitting of separatrices for a standard family of area-preserving transformations”, Wave propagation. Scattering theory, Probl. Mat. Fiz., 12, Leningrad. Univ., Leningrad, 1987, 32–41 ; 256–257 | MR
[5] V. F. Lazutkin, “Splitting of complex separatrices”, Funkt. Anal. Prilozhen., 22:2 (1988), 83–84 | DOI | MR
[6] V. F. Lazutkin, “Analytic integrals of a semistandard mapping, and separatrix splitting”, Algebra Analiz, 1:2 (1989), 116–131 | MR
[7] V. F. Lazutkin, I. G. Schachmannski, M. B. Tabanov, “Splitting of separatrices for standard and semistandard mappings”, Physica D, 40:2 (1989), 235–248 | DOI | MR | Zbl
[8] V. F. Lazutkin, “The width of the instability zone around separatrices of a standard mapping”, Dokl. Akad. Nauk SSSR, 313:2 (1990), 268–272 | MR
[9] V. F. Lazutkin, “Analytic integrals and separatrices splittings in Hamiltonian systems”, Conference on Differential Equations and Applications (Ruse, 1989), Tech. Univ., Ruse, 1991, 116–123 | MR
[10] V. G. Gelfreich, V. F. Lazutkin, M. B. Tabanov, “Exponentially small splittings in Hamiltonian systems”, Chaos, 1:2 (1991), 137–142 | DOI | MR | Zbl
[11] V. F. Lazutkin, “An analytic integral along the separatrix of the semistandard map: existence and an exponential estimate for the distance between the stable and unstable separatrices”, Algebra Analiz, 4:4 (1992), 110–142 | MR
[12] V. F. Lazutkin, “Recent results on the separatrix splitting for the standard map”, Sémin. Théor. Spectr. Géom., 11, Univ. Grenoble I, Saint-Martin-d'Hres, 1993 | MR
[13] V. F. Lazutkin, “Resurgent approach to the separatrices splitting”, International Conference on Differential Equations, Vol. 1, 2 (Barcelona, 1991), World Sci. Publishing, River Edge, NJ, 1993, 163–176 | MR | Zbl
[14] V. G. Gelfreich, V. F. Lazutkin, N. V. Svanidze, “A refined formula for the separatrix splitting for the standard map”, Physica D, 71:1–2 (1994), 82–101 | DOI | MR | Zbl
[15] V. F. Lazutkin, Splitting of separatrices for the Chirikov's standard map, Mathematical Physics Preprint Archive 98-421, 1998 | MR
[16] V. G. Gelfreich, “A proof of the exponentially small transversality of the separatrices for the standard map”, Comm. Math. Phys., 201:1 (1999), 155–216 | DOI | MR | Zbl
[17] V. G. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Uspekhi Mat. Nauk, 56:3(339) (2001), 79–142 | MR