On exponentially small effects in dynamical systems with a~small parameter
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 273-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper we obtain a theorem which enables us to treat different exponentially small effects of dynamics from a unified point of view. As an example, we discuss the problem of fast phase averaging in non-autonomous Hamiltonian system with 3/2 degrees of freedom.
			
            
            
            
          
        
      @article{ZNSL_2003_300_a28,
     author = {O. \`E. Zubelevich},
     title = {On exponentially small effects in dynamical systems with a~small parameter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {273--278},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a28/}
}
                      
                      
                    O. È. Zubelevich. On exponentially small effects in dynamical systems with a~small parameter. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 273-278. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a28/
