Hyperbolic structure for the quadratic map
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 266-272

Voir la notice de l'article provenant de la source Math-Net.Ru

The quadratic map of the real plane is considered. A possible construction of a hyperbolic structure on some non compact set is suggested and discussed.
@article{ZNSL_2003_300_a27,
     author = {E. V. Volkov},
     title = {Hyperbolic structure for the quadratic map},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {266--272},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a27/}
}
TY  - JOUR
AU  - E. V. Volkov
TI  - Hyperbolic structure for the quadratic map
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 266
EP  - 272
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a27/
LA  - en
ID  - ZNSL_2003_300_a27
ER  - 
%0 Journal Article
%A E. V. Volkov
%T Hyperbolic structure for the quadratic map
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 266-272
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a27/
%G en
%F ZNSL_2003_300_a27
E. V. Volkov. Hyperbolic structure for the quadratic map. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 266-272. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a27/