The Andronov–Hopf bifurcation with $2:1$ resonance
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 259-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider dissipative dynamical systems in the neighborhood of quasi-periodic $n$-dimensional invariant tori that are not normally hyperbolic. We assume that the normal spectrum contains precisely two pairs of simple pure imaginary eigenvalues. We investigate the case where the frequencies are in the ratio $2:1$. We establish sufficient conditions for the existence of invariant tori of dimension $n+p$ in certain region of the parameter space.
@article{ZNSL_2003_300_a26,
     author = {D. Yu. Volkov},
     title = {The {Andronov{\textendash}Hopf} bifurcation with~$2:1$ resonance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--265},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/}
}
TY  - JOUR
AU  - D. Yu. Volkov
TI  - The Andronov–Hopf bifurcation with $2:1$ resonance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 259
EP  - 265
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/
LA  - en
ID  - ZNSL_2003_300_a26
ER  - 
%0 Journal Article
%A D. Yu. Volkov
%T The Andronov–Hopf bifurcation with $2:1$ resonance
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 259-265
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/
%G en
%F ZNSL_2003_300_a26
D. Yu. Volkov. The Andronov–Hopf bifurcation with $2:1$ resonance. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 259-265. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/

[1] V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983 | MR

[2] Yu. N. Bibikov, Multifrequency Nonlinear Oscillations and their Bifurcations, Leningrad Univ. Press, 1991 | MR

[3] H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Mathematics, 1645, Springer, Berlin, 1996 | MR

[4] H. W. Broer, G. B. Huitema, F. Takens, B. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 421, 1990 | MR

[5] A. Chenciner, G. Looss, “Bifurcations de tores invariants”, Arch. Rat. Mech. An., 69:2 (1979), 109–198 | DOI | MR | Zbl

[6] D. Flockerzi, “Generalized bifurcation of higher dimensional tori”, J. Diff. Eq., 55 (1984), 346–367 | DOI | MR | Zbl

[7] E. Knobloch, M. Proctor, “The double Hopf bifurcation with 2:1 resonance”, Proc. R. Soc. Lond. A, 415 (1988), 61–90 | DOI | MR

[8] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer-Verlag, 1993 | MR | Zbl

[9] V. G. LeBlanc, W. F. Langford, “Classification and Unfoldings of 1:2 Resonant Hopf Bifurcation”, Arch. Rational Mech. Anal., 136 (1996), 305–357 | DOI | MR | Zbl

[10] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, 1976 | MR

[11] J. Moser, Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics, Ann. Math. Studies, 77, Princeton Univ. Press, 1973 | MR | Zbl

[12] G. R. Sell, “Bifurcation of higher dimensional tori”, Arch. Rat. Mech. An., 69:13 (1979), 199–230 | MR | Zbl

[13] D. Yu. Volkov, “Bifurcation of invariant tori of equilibrium state involving zero characteristic values”, Vestn. Leningr. Univ., Ser. I, 1988, no. 2, 102–103 | MR