The Andronov--Hopf bifurcation with~$2:1$ resonance
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 259-265

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dissipative dynamical systems in the neighborhood of quasi-periodic $n$-dimensional invariant tori that are not normally hyperbolic. We assume that the normal spectrum contains precisely two pairs of simple pure imaginary eigenvalues. We investigate the case where the frequencies are in the ratio $2:1$. We establish sufficient conditions for the existence of invariant tori of dimension $n+p$ in certain region of the parameter space.
@article{ZNSL_2003_300_a26,
     author = {D. Yu. Volkov},
     title = {The {Andronov--Hopf} bifurcation with~$2:1$ resonance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--265},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/}
}
TY  - JOUR
AU  - D. Yu. Volkov
TI  - The Andronov--Hopf bifurcation with~$2:1$ resonance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 259
EP  - 265
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/
LA  - en
ID  - ZNSL_2003_300_a26
ER  - 
%0 Journal Article
%A D. Yu. Volkov
%T The Andronov--Hopf bifurcation with~$2:1$ resonance
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 259-265
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/
%G en
%F ZNSL_2003_300_a26
D. Yu. Volkov. The Andronov--Hopf bifurcation with~$2:1$ resonance. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 259-265. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a26/