Small islands of stability in the phase space of the Carleson map
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 250-258
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Carleson map on the two dimensional torus and develop an asymptotic theory of islands of an arbitrary period.
@article{ZNSL_2003_300_a25,
author = {N. V. Svanidze},
title = {Small islands of stability in the phase space of the {Carleson} map},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {250--258},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/}
}
N. V. Svanidze. Small islands of stability in the phase space of the Carleson map. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 250-258. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/
[1] V. F. Lazutkin, N. V. Petrova, N. V. Svanidze, “Small islands of stability in the chaotic sea”, Control of Oscillations and Chaos (COC 2000), Proc. of the Second International Conf. Vol. 1, 52–53