Small islands of stability in the phase space of the Carleson map
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 250-258

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Carleson map on the two dimensional torus and develop an asymptotic theory of islands of an arbitrary period.
@article{ZNSL_2003_300_a25,
     author = {N. V. Svanidze},
     title = {Small islands of stability in the phase space of the {Carleson} map},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--258},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/}
}
TY  - JOUR
AU  - N. V. Svanidze
TI  - Small islands of stability in the phase space of the Carleson map
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 250
EP  - 258
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/
LA  - en
ID  - ZNSL_2003_300_a25
ER  - 
%0 Journal Article
%A N. V. Svanidze
%T Small islands of stability in the phase space of the Carleson map
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 250-258
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/
%G en
%F ZNSL_2003_300_a25
N. V. Svanidze. Small islands of stability in the phase space of the Carleson map. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 250-258. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a25/