Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 245-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The relationship between eigenfunctions of Fredholm type integral equation with rapidly oscillating kernel and dynamic mapping is analysed. The differential operators commuting with Fourier operator are constructed. These operators are closely connected with nontrivial solutions of unperturbed nonlinear functional equation related to the dynamic mapping.
@article{ZNSL_2003_300_a24,
     author = {S. Yu. Slavyanov},
     title = {Integral equations of {Fredholm} type with rapidly varying kernels and their relationship to dynamic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {245--249},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/}
}
TY  - JOUR
AU  - S. Yu. Slavyanov
TI  - Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 245
EP  - 249
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/
LA  - en
ID  - ZNSL_2003_300_a24
ER  - 
%0 Journal Article
%A S. Yu. Slavyanov
%T Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 245-249
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/
%G en
%F ZNSL_2003_300_a24
S. Yu. Slavyanov. Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 245-249. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/

[1] V. F. Lazutkin, “Spectral degeneracy and “small denominators” in the asymptotics of eigenfunctions of “bouncing ball” type”, Vestnik Leningrad. Univ., Math., 24:7 (1969), 23–34 | MR | Zbl

[2] V. F. Lazutkin, “Eigenfunctions with Given Caustic”, J. of Comput. Math. and Math. Phys., 10:2 (1970), 362–373 | MR | Zbl

[3] S. Yu. Slavyanov, “The construction of the asymptotics of the eigenfunctions of Fredholm type integral equations with symmetric rapidly oscillating kernels. Scattering Theory”, Theory of oscillations. Probl. Mat. Fiz., 6 (1973), 134–141

[4] S. Yu. Slavyanov, “On the theory of open resonators”, Zh. Exp. Teor. Fiz., 64 (1973), 785–795

[5] S. Yu. Slavyanov, V. G. Farafonov, “Aberrations in open resonators with axial symmetry”, Opt. and Spectr., 76 (1979), 182–184

[6] L. I. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Spheroidal and Coulomb spheroidal functions, Nauka, Moscow, 1976 | MR | Zbl