Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 245-249
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The relationship between eigenfunctions of Fredholm type integral equation with rapidly oscillating kernel and dynamic mapping is analysed. The differential operators commuting with Fourier operator are constructed. These operators are closely connected with nontrivial solutions of unperturbed nonlinear functional equation related to the dynamic mapping.
			
            
            
            
          
        
      @article{ZNSL_2003_300_a24,
     author = {S. Yu. Slavyanov},
     title = {Integral equations of {Fredholm} type with rapidly varying kernels and their relationship to dynamic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {245--249},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/}
}
                      
                      
                    TY - JOUR AU - S. Yu. Slavyanov TI - Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 245 EP - 249 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/ LA - en ID - ZNSL_2003_300_a24 ER -
%0 Journal Article %A S. Yu. Slavyanov %T Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 245-249 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/ %G en %F ZNSL_2003_300_a24
S. Yu. Slavyanov. Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 245-249. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a24/
