Inverse cascade solutions of the Euler equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 238-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The motion of an ideal incompressible fluid in a 2-dimensional domain $M$ is considered. The initial velocity field is supposed to be small-scaled, i.e. its Fourier transform is concentrated at high frequences. The extreme case of flows corresponding to solutions of the Euler equations starting from the ZERO scale is studied. The main result of this work is that such solution exists. Its construction uses variational principle, generalized flows and continual braids.
@article{ZNSL_2003_300_a23,
     author = {A. I. Shnirel'man},
     title = {Inverse cascade solutions of the {Euler} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--244},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/}
}
TY  - JOUR
AU  - A. I. Shnirel'man
TI  - Inverse cascade solutions of the Euler equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 238
EP  - 244
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/
LA  - en
ID  - ZNSL_2003_300_a23
ER  - 
%0 Journal Article
%A A. I. Shnirel'man
%T Inverse cascade solutions of the Euler equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 238-244
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/
%G en
%F ZNSL_2003_300_a23
A. I. Shnirel'man. Inverse cascade solutions of the Euler equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 238-244. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/

[1] V. Arnold, B. Khesin, Topological Methods, in Hydrodynamics, Applied Mathematical Sciences Series, 125, Springer Verlag, New York, 1998 | MR | Zbl

[2] Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluid”, J. Amer. Math. Soc., 2:2 (1989), 225–255 | DOI | MR | Zbl

[3] U. Frisch, Turbulence. The Legacy Of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995 | MR

[4] A. Shnirelman, “The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid”, Math. USSR Sbornik, 56:1 (1995), 79–105 | DOI

[5] A. Shnirelman, “Diffeomorphisms, braids and flows”, An Introduction to the Geometry and Topology of Fluid Flows, NATO Science Series II. Mathematics, Physics and Chemistry, 47, Kluver Academic Publishers, Dordrecht–Boston–London, 2002, 253–270 | MR