@article{ZNSL_2003_300_a23,
author = {A. I. Shnirel'man},
title = {Inverse cascade solutions of the {Euler} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--244},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/}
}
A. I. Shnirel'man. Inverse cascade solutions of the Euler equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 238-244. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a23/
[1] V. Arnold, B. Khesin, Topological Methods, in Hydrodynamics, Applied Mathematical Sciences Series, 125, Springer Verlag, New York, 1998 | MR | Zbl
[2] Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluid”, J. Amer. Math. Soc., 2:2 (1989), 225–255 | DOI | MR | Zbl
[3] U. Frisch, Turbulence. The Legacy Of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995 | MR
[4] A. Shnirelman, “The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid”, Math. USSR Sbornik, 56:1 (1995), 79–105 | DOI
[5] A. Shnirelman, “Diffeomorphisms, braids and flows”, An Introduction to the Geometry and Topology of Fluid Flows, NATO Science Series II. Mathematics, Physics and Chemistry, 47, Kluver Academic Publishers, Dordrecht–Boston–London, 2002, 253–270 | MR