Cartesian approach for nonholonomic systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 228-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this communication is to develop a Cartesian approach to describe nonholonomic systems with constraints which are linear with respect to velocity. The obtained results are applied to study the classical nonholonomic system: the constrained particle in $\mathbb{R}^3$, the Chapliguin–Carathéodory sleigh and the symmetrical top in the Suslov problem.
@article{ZNSL_2003_300_a22,
     author = {R. Ramirez and N. Sadovskaia},
     title = {Cartesian approach for nonholonomic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--237},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a22/}
}
TY  - JOUR
AU  - R. Ramirez
AU  - N. Sadovskaia
TI  - Cartesian approach for nonholonomic systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 228
EP  - 237
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a22/
LA  - en
ID  - ZNSL_2003_300_a22
ER  - 
%0 Journal Article
%A R. Ramirez
%A N. Sadovskaia
%T Cartesian approach for nonholonomic systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 228-237
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a22/
%G en
%F ZNSL_2003_300_a22
R. Ramirez; N. Sadovskaia. Cartesian approach for nonholonomic systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 228-237. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a22/

[1] V. V. Kozlov, Obshchaya teoriya vikhrey, Udmurskiy Universitiet, 1998

[2] V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1996 | MR

[3] Yu. Neimark, N. A. Fufaev, Dynamics of nonholonomic Systems, Amer. Math. Soc. Translation, 33, 1972 | Zbl

[4] N. N. Polyakhov et all., Mekhanica teoretika, LGU, 1985

[5] N. Sadovskaia, Inverse problem in theory of ordinary differentialand equations, Thesis Ph.D. Spain, 2002

[6] E. I. Kharlamov–Zabelina, “Rapid rotation of a rigid body about a fixed point under the presence of a nonholonomic constraints”, Vestnik Moskovsk. Univ., Ser. Math. Mekh., Astron., Fiz.Khim., 6 (1957), 25–34