Embedded spectrum on a metric graph (an observation)
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 215-220
Cet article a éte moissonné depuis la source Math-Net.Ru
An elementary example of a simplest star-like graph which shows that the analytical disjunction may occur not on only at isolated points of the spectral parameter, but also on whole intervals, are suggested.
@article{ZNSL_2003_300_a20,
author = {V. L. Oleinik and B. S. Pavlov},
title = {Embedded spectrum on a~metric graph (an observation)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {215--220},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/}
}
V. L. Oleinik; B. S. Pavlov. Embedded spectrum on a metric graph (an observation). Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 215-220. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/
[1] V. Bogevolnov, A. Mikhailova, B. Pavlov, A. Yafyasov, “About scattering on the ring”, Operator Theory: Advances and Application, 124, Birkhauser Verlag, Basel, 2001, 155–187 | MR