Embedded spectrum on a~metric graph (an observation)
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 215-220

Voir la notice de l'article provenant de la source Math-Net.Ru

An elementary example of a simplest star-like graph which shows that the analytical disjunction may occur not on only at isolated points of the spectral parameter, but also on whole intervals, are suggested.
@article{ZNSL_2003_300_a20,
     author = {V. L. Oleinik and B. S. Pavlov},
     title = {Embedded spectrum on a~metric graph (an observation)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--220},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/}
}
TY  - JOUR
AU  - V. L. Oleinik
AU  - B. S. Pavlov
TI  - Embedded spectrum on a~metric graph (an observation)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 215
EP  - 220
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/
LA  - en
ID  - ZNSL_2003_300_a20
ER  - 
%0 Journal Article
%A V. L. Oleinik
%A B. S. Pavlov
%T Embedded spectrum on a~metric graph (an observation)
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 215-220
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/
%G en
%F ZNSL_2003_300_a20
V. L. Oleinik; B. S. Pavlov. Embedded spectrum on a~metric graph (an observation). Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 215-220. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a20/