Two-dimensional chaos: the baker map under control
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 206-214
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some results on the stochastic control of two-dimensional chaotic map, i.e., baker map are presented. The approach is based on probabilistic coupling of the controlled dynamics with a controlling system and subsequent lift of the coupled dynamics in a suitable functional space. The lifted dynamics is described in terms of probability densities and is governed by linear Perron–Frobenius and Koopman operators.
@article{ZNSL_2003_300_a19,
     author = {Yu. A. Kuperin and D. A. Pyatkin},
     title = {Two-dimensional chaos: the baker map under control},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {206--214},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a19/}
}
TY  - JOUR
AU  - Yu. A. Kuperin
AU  - D. A. Pyatkin
TI  - Two-dimensional chaos: the baker map under control
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 206
EP  - 214
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a19/
LA  - en
ID  - ZNSL_2003_300_a19
ER  - 
%0 Journal Article
%A Yu. A. Kuperin
%A D. A. Pyatkin
%T Two-dimensional chaos: the baker map under control
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 206-214
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a19/
%G en
%F ZNSL_2003_300_a19
Yu. A. Kuperin; D. A. Pyatkin. Two-dimensional chaos: the baker map under control. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 206-214. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a19/

[1] A. Lasota, M. Mackey, Probabilistic Properties of Deterministic Systems, Cambrige University Press, NY, 1985 | MR | Zbl

[2] E. Ott, C. Grebogi, J. A. Yorke, “Controlling chaotic dynamical systems”, Chaos Soviet-American Perspectives on Nonlinear Science, ed. D. K. Campbell, American Institute of Physics, NY, 1990, 153–172 | MR

[3] Hiroshi H. Hasegawa, Dean J. Driebe, “Intrinsic irreversibility and the validity of the kinetic description of chaotic systems”, Phys. Rev. E, 50 (1994), 1781–1809 | DOI | MR

[4] Hiroshi H. Hasegawa, William C. Saphir, “Unitarity and irreversibility in chaotic systems”, Phys. Rev. A, 46 (1992), 7401–7423 | DOI | MR

[5] I. Antoniou, S. Tasaki, “Generalized spectral decomposition of mixing dynamical systems”, Intern. J. of Quantum Chemistry, 46 (1993), 425–474 | DOI

[6] I. Antoniou, V. Basios, F. Bosco, “Probabilistic Control of Chaos: Chaotic Maps Under Control.”, Computers Math. Applic., 34:2–4 (1997), 373–389 | DOI | MR | Zbl

[7] C. Obcema, E. Brandas, Ann. Phys., 151 (1983), 383 | DOI

[8] H. G. Schuster, Deterministic Chaos, Physik-Verlag, Weinheim, 1984 | MR | Zbl