Weak convergence of measures in conservative systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 194-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Families of probability measures on the phase space of a dynamical system are considered. These measures are obtained as shifts of a given measure by the phase flow. Sufficient conditions for the existence of the weak convergence of the measures as the rate of the shift tends to infinity are proposed. Existence of such a limit leads to a new interpretation of the second law of thermodynamics.
@article{ZNSL_2003_300_a18,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Weak convergence of measures in conservative systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--205},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a18/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Weak convergence of measures in conservative systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 194
EP  - 205
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a18/
LA  - en
ID  - ZNSL_2003_300_a18
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Weak convergence of measures in conservative systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 194-205
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a18/
%G en
%F ZNSL_2003_300_a18
V. V. Kozlov; D. V. Treschev. Weak convergence of measures in conservative systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 194-205. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a18/

[1] W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics, Charles Scribners Sons, New York, 1902 | Zbl

[2] H. Poincaré, “Réflections sur la théorie cinétique des gaz”, J. Phys. Théoret. et Appl. $4^e$ Sér., 5 (1906), 369–403 | DOI | Zbl

[3] V. V. Kozlov, “Heat equilibrium according to Gibbs and Poincare”, Doklady RAN, 382:5 (2002), 602–605 | MR

[4] V. V. Nemytsky, V. V. Stepanov, Qualitative theory of differential equations, Gostekhizdat, 1949

[5] V. V. Kozlov, “Kinetic of collosoinless continuous medium”, Regular and Chaotic Dynamics, 6:3 (2001), 235 | DOI | MR | Zbl