On Hamiltonian systems with homoclinic orbit to a saddle-center
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 187-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such the system and show that in nonresonance case there are countable sets of multi-round homoclinic orbits to a saddle-center. We also find families of periodic orbits, accumulating at homoclinic orbits.
@article{ZNSL_2003_300_a17,
     author = {O. Yu. Koltsova},
     title = {On {Hamiltonian} systems with homoclinic orbit to a~saddle-center},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--193},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a17/}
}
TY  - JOUR
AU  - O. Yu. Koltsova
TI  - On Hamiltonian systems with homoclinic orbit to a saddle-center
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 187
EP  - 193
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a17/
LA  - en
ID  - ZNSL_2003_300_a17
ER  - 
%0 Journal Article
%A O. Yu. Koltsova
%T On Hamiltonian systems with homoclinic orbit to a saddle-center
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 187-193
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a17/
%G en
%F ZNSL_2003_300_a17
O. Yu. Koltsova. On Hamiltonian systems with homoclinic orbit to a saddle-center. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 187-193. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a17/

[1] C. Grotta Ragazzo, “Irregular dynamics and homoclinic orbits to Hamiltonian saddle-center”, Comm. Pure Appl. Math. Phys., 50 (1997), 105–147 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] O. Yu. Koltsova, “On a structure of a bifurcation set in a two-parameter family of Hamiltonian systems with a seperatrix loop”, Methods of Qualitative Theory of Diff. Eq., ed. L. P. Shil'nikov, Nizhny Novgorod State Univ., 1991, 25–35 | MR

[3] O. Yu. Koltsova, L. M. Lerman, “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian systems with a homoclinic orbit to a saddle-center”, Int. J. of Bifurcations and Chaos, 5:2 (1995), 397–408 | DOI | MR | Zbl

[4] L. M. Lerman, “Hamiltonian systems with a separatrix loop of a saddle-center”, Methods of Qualitative Theory of Diff. Eq., ed. E. A. Leontovich-Andronova, Gorky State Univ., 1987, 89–103 | MR | Zbl

[5] A. Mielke, P. Holmes, O. O'Reilly, “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center”, J. Dyn. Diff. Eq., 4 (1992), 95–126 | DOI | MR | Zbl

[6] J. Moser, “On the generalization of a theorem of A. Liapunoff”, Comm. Pure Appl. Math., 11 (1958), 257–271 | DOI | MR | Zbl