On bifurcations of three-dimensional diffeomorphisms with a~homoclinic tangency to a~``neutral'' saddle fixed point
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 167-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Bifurcations of single-round periodic orbits of three-dimensional diffeomorphisms with a quadratic homoclinic tangency of manifolds of a saddle fixed point with the saddle value equal to 1 are studied.
			
            
            
            
          
        
      @article{ZNSL_2003_300_a14,
     author = {V. S. Gonchenko and I. I. Ovsyannikov},
     title = {On bifurcations of three-dimensional diffeomorphisms with a~homoclinic tangency to a~``neutral'' saddle fixed point},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--172},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a14/}
}
                      
                      
                    TY - JOUR AU - V. S. Gonchenko AU - I. I. Ovsyannikov TI - On bifurcations of three-dimensional diffeomorphisms with a~homoclinic tangency to a~``neutral'' saddle fixed point JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 167 EP - 172 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a14/ LA - en ID - ZNSL_2003_300_a14 ER -
%0 Journal Article %A V. S. Gonchenko %A I. I. Ovsyannikov %T On bifurcations of three-dimensional diffeomorphisms with a~homoclinic tangency to a~``neutral'' saddle fixed point %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 167-172 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a14/ %G en %F ZNSL_2003_300_a14
V. S. Gonchenko; I. I. Ovsyannikov. On bifurcations of three-dimensional diffeomorphisms with a~homoclinic tangency to a~``neutral'' saddle fixed point. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 167-172. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a14/
