On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Semi-local dynamics of two-dimensional symplectic diffeomorphisms with homoclinic tangencies are studied. Conditions when infinitely many generic elliptic periodic orbits exist of successive periods beginning with some integer are found.
			
            
            
            
          
        
      @article{ZNSL_2003_300_a13,
     author = {S. V. Gonchenko and L. P. Shilnikov},
     title = {On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/}
}
                      
                      
                    TY - JOUR AU - S. V. Gonchenko AU - L. P. Shilnikov TI - On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 155 EP - 166 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/ LA - en ID - ZNSL_2003_300_a13 ER -
%0 Journal Article %A S. V. Gonchenko %A L. P. Shilnikov %T On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 155-166 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/ %G en %F ZNSL_2003_300_a13
S. V. Gonchenko; L. P. Shilnikov. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/
