On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Semi-local dynamics of two-dimensional symplectic diffeomorphisms with homoclinic tangencies are studied. Conditions when infinitely many generic elliptic periodic orbits exist of successive periods beginning with some integer are found.
@article{ZNSL_2003_300_a13,
     author = {S. V. Gonchenko and L. P. Shilnikov},
     title = {On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--166},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - L. P. Shilnikov
TI  - On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 155
EP  - 166
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/
LA  - en
ID  - ZNSL_2003_300_a13
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A L. P. Shilnikov
%T On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 155-166
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/
%G en
%F ZNSL_2003_300_a13
S. V. Gonchenko; L. P. Shilnikov. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/

[1] S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional analytic area-preserving diffeomorphisms with infinitely many stable elliptic periodic points”, Regular and Chaotic Dynamics, 2:3–4 (1997), 106–123 | MR | Zbl

[2] S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional area-preserving diffeomorphisms with infinitely many elliptic islands”, J. Stat. Phys., 101:1–2 (2000), 321–356 | DOI | MR | Zbl

[3] S. V. Gonchenko, L. P. Shilnikov, “Invariants of $\Omega$-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory”, Ukrainian Math. J., 42:2 (1990), 134–140 | DOI | MR | Zbl

[4] S. V. Gonchenko, L. P. Shilnikov, “On moduli of systems with a structurally unstable homoclinic Poincare curve”, Izv. RAN, 41 (1992), 417–445 | DOI | MR | Zbl

[5] S. V. Gonchenko, L. P. Shilnikov, “On dynamical systems with structurally unstable homoclinic curves”, Soviet Math. Dokl., 33:1 (1986), 234–238 | MR | Zbl

[6] S. V. Gonchenko, L. P. Shilnikov, “Arithmetic properties of topological invariants of systems with a structurally unstable homoclinic trajectory”, Ukr. Math. J., 39:1 (1987), 21–28 | DOI | MR | Zbl

[7] S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional area-preserving mappings with homoclinic tangencies”, Dokl. Mathem., 63:3 (2001), 395–399 | MR | Zbl

[8] L. P. Shilnikov, “On a Poincaré-Birkhoff problem”, Math. Sb. USSR, 3:3 (1967), 353–371 | DOI

[9] J. Moser, “The analytic invariants of an area-preserving mapping near a hyperbolic fixed point”, Comm. of Pure and Appl. Math., 9 (1956), 673–692 | DOI | MR | Zbl

[10] N. K. Gavrilov, L. P. Shilnikov, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, I”, Math. Sb. USSR, 17 (1972), 467–485 ; “II”, 19 (1973), 139–156 | DOI | DOI

[11] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, 1998 | MR | Zbl

[12] S. V. Gonchenko, L. P. Shilnikov, “On geometrical properties of two-dimensional diffeomorphisms with homoclinic tangencies”, Int. J. of Bifurcation and Chaos, 5:3 (1995), 819–829 | DOI | MR | Zbl

[13] V. S. Afraimovich, L. P. Shilnikov, “Strange attractors and quasiattractors”, Nonlinear Dynamics and Turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitmen, Boston, 1983, 1–34 | MR

[14] V. S. Biragov, “Bifurcations in a two-parameter family of conservative mappings that are close to the Henon map”, Selecta Math. Sov., 9 (1990), 273–282 | MR | Zbl