On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Semi-local dynamics of two-dimensional symplectic diffeomorphisms with homoclinic tangencies are studied. Conditions when infinitely many generic elliptic periodic orbits exist of successive periods beginning with some integer are found.
@article{ZNSL_2003_300_a13,
     author = {S. V. Gonchenko and L. P. Shilnikov},
     title = {On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - L. P. Shilnikov
TI  - On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 155
EP  - 166
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/
LA  - en
ID  - ZNSL_2003_300_a13
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A L. P. Shilnikov
%T On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 155-166
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/
%G en
%F ZNSL_2003_300_a13
S. V. Gonchenko; L. P. Shilnikov. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 155-166. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a13/