Creating transverse homoclinic connections in planar billiards
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 122-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a planar billiard system containing stable and unstable manifolds that intersect non-transversely, we show how to make a local perturbation to the boundary that causes the intersection to become transverse. We apply these ideas to billiards inside an ellipse.
@article{ZNSL_2003_300_a10,
     author = {V. J. Donnay},
     title = {Creating transverse homoclinic connections in planar billiards},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {300},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/}
}
TY  - JOUR
AU  - V. J. Donnay
TI  - Creating transverse homoclinic connections in planar billiards
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 122
EP  - 134
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/
LA  - en
ID  - ZNSL_2003_300_a10
ER  - 
%0 Journal Article
%A V. J. Donnay
%T Creating transverse homoclinic connections in planar billiards
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 122-134
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/
%G en
%F ZNSL_2003_300_a10
V. J. Donnay. Creating transverse homoclinic connections in planar billiards. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 122-134. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/