@article{ZNSL_2003_300_a10,
author = {V. J. Donnay},
title = {Creating transverse homoclinic connections in planar billiards},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--134},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/}
}
V. J. Donnay. Creating transverse homoclinic connections in planar billiards. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 122-134. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/
[1] M. Bialy, “Convex billiards and a theorem by E. Hopf”, Math. Z., 214:1 (1993), 147–154 | DOI | MR | Zbl
[2] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer Verlag, 1982 | MR | Zbl
[3] A. Delshams, R. Ramírez-Ros, “Poincare–Melnikov–Arnold method for analytic planar maps”, Nonlinearity, 9:1 (1996), 1–26 | DOI | MR | Zbl
[4] A. Delshams, R. Ramírez-Ros, “On Birkhoff's conjecture about convex billiards”, Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), Collect. Études, Presses Univ. Perpignan, 1995, 85–94 | MR | Zbl
[5] V. J. Donnay, “Using integrability to produce chaos: billiards with positive entropy”, Comm. Math. Phys., 141 (1991), 225–257 | DOI | MR | Zbl
[6] V. J. Donnay, “Transverse homoclinic connections for geodesic flows”, Hamiltonian dynamical systems (Cincinnati, OH, 1992), IMA Vol. Math. Appl., 63, Springer, New York, 1995, 115–125 | MR | Zbl
[7] M. M. Dvorin, V. F. Lazutkin, “Existence of an infinite number of elliptic and hyperbolic periodic trajectories for convex billiards”, Funk. Anal. Priloz., 7:2 (1973), 20–27 | MR | Zbl
[8] V. Gelfreich, “A century of separatrices splitting in Hamiltonian dynamical systems: perturbation theory, exponential smallness”, XIII International Congress on Mathematical Physics, Int. Press, Boston, MA, London, 2000, 73–86 | MR
[9] V. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Uspekhi Mat. Nauk, 56:3(339) (2001), 79–142 | MR
[10] N. Innami, “Geometry of geodesics for convex billiards and circular billiards”, Nihonkai Math. J., 13:1 (2002), 73–120 | MR | Zbl
[11] Gwang Il Kim, “Elliptic Birkhoff's billiards with $C^2$-generic global perturbations”, Bull. Korean Math. Soc., 36:1 (1999), 147–159 | MR | Zbl
[12] G. Knieper, H. Weiss, “A surface with positive curvature and positive topological entropy”, J. Differential Geom., 39:2 (1994), 229–249 | MR | Zbl
[13] H. E. Lomeli, “Perturbations of elliptic billiards”, Phys. D, 99:1 (1996), 59–80 | DOI | MR | Zbl
[14] G. Paternain, “Real analytic convex surfaces with positive topological entropy and rigid body dynamics”, Manuscripta Math., 78:4 (1993), 397–402 | DOI | MR | Zbl
[15] D. Petroll, Existenz und Transversalitt von Homoklinen und Heteroklinen Orbits beim Geodtischen Fluss, Thesis, Universitt Freiburg, 1996 | Zbl
[16] Ya. G. Sinai, Introduction to Ergodic Theory, Princeton University Press, Princeton, 1976 | MR
[17] M. B. Tabanov, “Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse”, Chaos, 4:4 (1994), 595–606 | DOI | MR | Zbl
[18] M. Wojtkowski, “Principles for the design of billiards with nonvanishing Lyapunov exponent”, Commun. Math. Phys., 105 (1986), 319–414 | DOI | MR
[19] M. Wojtkowski, “Two applications of Jacobi fields to the billiard ball problem”, J. Differential Geom., 40:1 (1994), 155–164 | MR | Zbl