Creating transverse homoclinic connections in planar billiards
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 122-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Given a planar billiard system containing stable and unstable manifolds that intersect non-transversely, we show how to make a local perturbation to the boundary that causes the intersection to become transverse. We apply these ideas to billiards inside an ellipse.
@article{ZNSL_2003_300_a10,
     author = {V. J. Donnay},
     title = {Creating transverse homoclinic connections in planar billiards},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--134},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/}
}
TY  - JOUR
AU  - V. J. Donnay
TI  - Creating transverse homoclinic connections in planar billiards
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 122
EP  - 134
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/
LA  - en
ID  - ZNSL_2003_300_a10
ER  - 
%0 Journal Article
%A V. J. Donnay
%T Creating transverse homoclinic connections in planar billiards
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 122-134
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/
%G en
%F ZNSL_2003_300_a10
V. J. Donnay. Creating transverse homoclinic connections in planar billiards. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 122-134. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a10/

[1] M. Bialy, “Convex billiards and a theorem by E. Hopf”, Math. Z., 214:1 (1993), 147–154 | DOI | MR | Zbl

[2] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer Verlag, 1982 | MR | Zbl

[3] A. Delshams, R. Ramírez-Ros, “Poincare–Melnikov–Arnold method for analytic planar maps”, Nonlinearity, 9:1 (1996), 1–26 | DOI | MR | Zbl

[4] A. Delshams, R. Ramírez-Ros, “On Birkhoff's conjecture about convex billiards”, Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), Collect. Études, Presses Univ. Perpignan, 1995, 85–94 | MR | Zbl

[5] V. J. Donnay, “Using integrability to produce chaos: billiards with positive entropy”, Comm. Math. Phys., 141 (1991), 225–257 | DOI | MR | Zbl

[6] V. J. Donnay, “Transverse homoclinic connections for geodesic flows”, Hamiltonian dynamical systems (Cincinnati, OH, 1992), IMA Vol. Math. Appl., 63, Springer, New York, 1995, 115–125 | MR | Zbl

[7] M. M. Dvorin, V. F. Lazutkin, “Existence of an infinite number of elliptic and hyperbolic periodic trajectories for convex billiards”, Funk. Anal. Priloz., 7:2 (1973), 20–27 | MR | Zbl

[8] V. Gelfreich, “A century of separatrices splitting in Hamiltonian dynamical systems: perturbation theory, exponential smallness”, XIII International Congress on Mathematical Physics, Int. Press, Boston, MA, London, 2000, 73–86 | MR

[9] V. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Uspekhi Mat. Nauk, 56:3(339) (2001), 79–142 | MR

[10] N. Innami, “Geometry of geodesics for convex billiards and circular billiards”, Nihonkai Math. J., 13:1 (2002), 73–120 | MR | Zbl

[11] Gwang Il Kim, “Elliptic Birkhoff's billiards with $C^2$-generic global perturbations”, Bull. Korean Math. Soc., 36:1 (1999), 147–159 | MR | Zbl

[12] G. Knieper, H. Weiss, “A surface with positive curvature and positive topological entropy”, J. Differential Geom., 39:2 (1994), 229–249 | MR | Zbl

[13] H. E. Lomeli, “Perturbations of elliptic billiards”, Phys. D, 99:1 (1996), 59–80 | DOI | MR | Zbl

[14] G. Paternain, “Real analytic convex surfaces with positive topological entropy and rigid body dynamics”, Manuscripta Math., 78:4 (1993), 397–402 | DOI | MR | Zbl

[15] D. Petroll, Existenz und Transversalitt von Homoklinen und Heteroklinen Orbits beim Geodtischen Fluss, Thesis, Universitt Freiburg, 1996 | Zbl

[16] Ya. G. Sinai, Introduction to Ergodic Theory, Princeton University Press, Princeton, 1976 | MR

[17] M. B. Tabanov, “Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse”, Chaos, 4:4 (1994), 595–606 | DOI | MR | Zbl

[18] M. Wojtkowski, “Principles for the design of billiards with nonvanishing Lyapunov exponent”, Commun. Math. Phys., 105 (1986), 319–414 | DOI | MR

[19] M. Wojtkowski, “Two applications of Jacobi fields to the billiard ball problem”, J. Differential Geom., 40:1 (1994), 155–164 | MR | Zbl